Cargando…

Regenerated Fibers from Rennet-Treated Casein Micelles during Acidification

Micellar casein fibers of defined size and internal structure can be produced by the extrusion of cold-renneted casein micelles into a warm, calcium-rich coagulation bath. Calcium phosphate contacts within the casein matrix are important for fiber stability and production but become less important u...

Descripción completa

Detalles Bibliográficos
Autores principales: Gebhardt, Ronald, Darvishsefat, Novin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378896/
https://www.ncbi.nlm.nih.gov/pubmed/37504417
http://dx.doi.org/10.3390/gels9070538
Descripción
Sumario:Micellar casein fibers of defined size and internal structure can be produced by the extrusion of cold-renneted casein micelles into a warm, calcium-rich coagulation bath. Calcium phosphate contacts within the casein matrix are important for fiber stability and production but become less important under acidic pH conditions. We demonstrate this with swelling experiments in media with pH < 2, which we adjust with citric acid of different molarities. In contrast to the simple swelling of dried casein fibers in water, a two-phase process takes place in citric acid similar to swelling in 1 N HCl. However, instead of a second deswelling step, we observe in citric acid that the fiber swells further. The observation is explained by a pH-dependent transition from a rennet casein gel to an acidified rennet gel. This can be simulated with a kinetic model that couples two second-order rate equations via a time-varying ratio. The final swelling values decrease with increasing proton concentration via a scaling relation, which is also confirmed by swelling in other acids (HCl or acetic acid) in this pH range. We attribute this to a decrease in the molecular weights of the aggregated casein structures within the strands of the gel network.