Cargando…
Functional Hydrogels for Agricultural Application
Ten different hydrogels were prepared and analyzed from the point of view of their use in soil. FT-IR spectra, morphology, swelling ability, and rheological properties were determined for their characterization and appraisal of their stability. The aim was to characterize prepared materials containi...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378905/ https://www.ncbi.nlm.nih.gov/pubmed/37504469 http://dx.doi.org/10.3390/gels9070590 |
_version_ | 1785079881849110528 |
---|---|
author | Kratochvílová, Romana Kráčalík, Milan Smilková, Marcela Sedláček, Petr Pekař, Miloslav Bradt, Elke Smilek, Jiří Závodská, Petra Klučáková, Martina |
author_facet | Kratochvílová, Romana Kráčalík, Milan Smilková, Marcela Sedláček, Petr Pekař, Miloslav Bradt, Elke Smilek, Jiří Závodská, Petra Klučáková, Martina |
author_sort | Kratochvílová, Romana |
collection | PubMed |
description | Ten different hydrogels were prepared and analyzed from the point of view of their use in soil. FT-IR spectra, morphology, swelling ability, and rheological properties were determined for their characterization and appraisal of their stability. The aim was to characterize prepared materials containing different amounts of NPK as mineral fertilizer, lignohumate as a source of organic carbon, and its combination. This study of stability was focused on utility properties in their application in soil—repeated drying/re-swelling cycles and possible freezing in winter. Lignohumate supported the water absorbency, while the addition of NPK caused a negative effect. Pore sizes decreased with NPK addition. Lignohumate incorporated into polymers resulted in a much miscellaneous structure, rich in different pores and voids of with a wide range of sizes. NPK fertilizer supported the elastic character of prepared materials, while the addition of lignohumate shifted their rheological behavior to more liquid. Both dynamic moduli decreased in time. The most stable samples appeared to contain only one fertilizer constituent (NPK or lignohumate). Repeated re-swelling resulted in an increase in elastic character, which was connected with the gradual release of fertilizers. A similar effect was observed with samples that were frozen and defrosted, except samples containing a higher amount of NPK without lignohumate. A positive effect of acrylamide on superabsorbent properties was not confirmed. |
format | Online Article Text |
id | pubmed-10378905 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103789052023-07-29 Functional Hydrogels for Agricultural Application Kratochvílová, Romana Kráčalík, Milan Smilková, Marcela Sedláček, Petr Pekař, Miloslav Bradt, Elke Smilek, Jiří Závodská, Petra Klučáková, Martina Gels Article Ten different hydrogels were prepared and analyzed from the point of view of their use in soil. FT-IR spectra, morphology, swelling ability, and rheological properties were determined for their characterization and appraisal of their stability. The aim was to characterize prepared materials containing different amounts of NPK as mineral fertilizer, lignohumate as a source of organic carbon, and its combination. This study of stability was focused on utility properties in their application in soil—repeated drying/re-swelling cycles and possible freezing in winter. Lignohumate supported the water absorbency, while the addition of NPK caused a negative effect. Pore sizes decreased with NPK addition. Lignohumate incorporated into polymers resulted in a much miscellaneous structure, rich in different pores and voids of with a wide range of sizes. NPK fertilizer supported the elastic character of prepared materials, while the addition of lignohumate shifted their rheological behavior to more liquid. Both dynamic moduli decreased in time. The most stable samples appeared to contain only one fertilizer constituent (NPK or lignohumate). Repeated re-swelling resulted in an increase in elastic character, which was connected with the gradual release of fertilizers. A similar effect was observed with samples that were frozen and defrosted, except samples containing a higher amount of NPK without lignohumate. A positive effect of acrylamide on superabsorbent properties was not confirmed. MDPI 2023-07-22 /pmc/articles/PMC10378905/ /pubmed/37504469 http://dx.doi.org/10.3390/gels9070590 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kratochvílová, Romana Kráčalík, Milan Smilková, Marcela Sedláček, Petr Pekař, Miloslav Bradt, Elke Smilek, Jiří Závodská, Petra Klučáková, Martina Functional Hydrogels for Agricultural Application |
title | Functional Hydrogels for Agricultural Application |
title_full | Functional Hydrogels for Agricultural Application |
title_fullStr | Functional Hydrogels for Agricultural Application |
title_full_unstemmed | Functional Hydrogels for Agricultural Application |
title_short | Functional Hydrogels for Agricultural Application |
title_sort | functional hydrogels for agricultural application |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378905/ https://www.ncbi.nlm.nih.gov/pubmed/37504469 http://dx.doi.org/10.3390/gels9070590 |
work_keys_str_mv | AT kratochvilovaromana functionalhydrogelsforagriculturalapplication AT kracalikmilan functionalhydrogelsforagriculturalapplication AT smilkovamarcela functionalhydrogelsforagriculturalapplication AT sedlacekpetr functionalhydrogelsforagriculturalapplication AT pekarmiloslav functionalhydrogelsforagriculturalapplication AT bradtelke functionalhydrogelsforagriculturalapplication AT smilekjiri functionalhydrogelsforagriculturalapplication AT zavodskapetra functionalhydrogelsforagriculturalapplication AT klucakovamartina functionalhydrogelsforagriculturalapplication |