Cargando…

lmo4a Contributes to Zebrafish Inner Ear and Vestibular Development via Regulation of the Bmp Pathway

Background: In vertebrates, the development of the inner ear is a delicate process, whereas its relating molecular pathways are still poorly understood. LMO4, an LIM domain-only transcriptional regulator, is drawing an increasing amount of interest for its multiple roles regarding human embryonic de...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Le, Ping, Lu, Gao, Ruzhen, Zhang, Bo, Chen, Xiaowei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378989/
https://www.ncbi.nlm.nih.gov/pubmed/37510276
http://dx.doi.org/10.3390/genes14071371
_version_ 1785079901936680960
author Sun, Le
Ping, Lu
Gao, Ruzhen
Zhang, Bo
Chen, Xiaowei
author_facet Sun, Le
Ping, Lu
Gao, Ruzhen
Zhang, Bo
Chen, Xiaowei
author_sort Sun, Le
collection PubMed
description Background: In vertebrates, the development of the inner ear is a delicate process, whereas its relating molecular pathways are still poorly understood. LMO4, an LIM domain-only transcriptional regulator, is drawing an increasing amount of interest for its multiple roles regarding human embryonic development and the modulation of ototoxic side effects of cisplatin including cochlear apoptosis and hearing loss. The aim of the present study is to further explore the role of lmo4a in zebrafish inner ear development and thus explore its functional role. Methods: The Spatial Transcript Omics DataBase was referred to in order to evaluate the expression of lmo4a during the first 24 h of zebrafish development. In situ hybridization was applied to validate and extend the expression profile of lmo4a to 3 days post-fertilization. The morpholino (MO) knockdown and CRISPR/Cas9 knockout (KO) of lmo4a was applied. Morphological analyses of otic vesical, hair cells, statoacoustic ganglion and semicircular canals were conducted. The swimming pattern of lmo4a KO and MO zebrafish was tracked. In situ hybridization was further applied to verify the expression of genes of the related pathways. Rescue of the phenotype was attempted by blockage of the bmp pathway via heat shock and injection of Dorsomorphin. Results: lmo4a is constitutively expressed in the otic placode and otic vesicle during the early stages of zebrafish development. Knockdown and knockout of lmo4a both induced smaller otocysts, less hair cells, immature statoacoustic ganglion and malformed semicircular canals. Abnormal swimming patterns could be observed in both lmo4a MO and KO zebrafish. eya1 in preplacodal ectoderm patterning was downregulated. bmp2 and bmp4 expressions were found to be upregulated and extended in lmo4a morphants, and blockage of the Bmp pathway partially rescued the vestibular defects. Conclusions: We concluded that lmo4a holds a regulative effect on the Bmp pathway and is required for the normal development of zebrafish inner ear. Our study pointed out the conservatism of LMO4 in inner ear development between mammals and zebrafish as well as shed more light on the molecular mechanisms behind it. Further research is needed to distinguish the relationships between lmo4 and the Bmp pathway, which may lead to diagnostic and therapeutic approaches towards human inner ear malformation.
format Online
Article
Text
id pubmed-10378989
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103789892023-07-29 lmo4a Contributes to Zebrafish Inner Ear and Vestibular Development via Regulation of the Bmp Pathway Sun, Le Ping, Lu Gao, Ruzhen Zhang, Bo Chen, Xiaowei Genes (Basel) Article Background: In vertebrates, the development of the inner ear is a delicate process, whereas its relating molecular pathways are still poorly understood. LMO4, an LIM domain-only transcriptional regulator, is drawing an increasing amount of interest for its multiple roles regarding human embryonic development and the modulation of ototoxic side effects of cisplatin including cochlear apoptosis and hearing loss. The aim of the present study is to further explore the role of lmo4a in zebrafish inner ear development and thus explore its functional role. Methods: The Spatial Transcript Omics DataBase was referred to in order to evaluate the expression of lmo4a during the first 24 h of zebrafish development. In situ hybridization was applied to validate and extend the expression profile of lmo4a to 3 days post-fertilization. The morpholino (MO) knockdown and CRISPR/Cas9 knockout (KO) of lmo4a was applied. Morphological analyses of otic vesical, hair cells, statoacoustic ganglion and semicircular canals were conducted. The swimming pattern of lmo4a KO and MO zebrafish was tracked. In situ hybridization was further applied to verify the expression of genes of the related pathways. Rescue of the phenotype was attempted by blockage of the bmp pathway via heat shock and injection of Dorsomorphin. Results: lmo4a is constitutively expressed in the otic placode and otic vesicle during the early stages of zebrafish development. Knockdown and knockout of lmo4a both induced smaller otocysts, less hair cells, immature statoacoustic ganglion and malformed semicircular canals. Abnormal swimming patterns could be observed in both lmo4a MO and KO zebrafish. eya1 in preplacodal ectoderm patterning was downregulated. bmp2 and bmp4 expressions were found to be upregulated and extended in lmo4a morphants, and blockage of the Bmp pathway partially rescued the vestibular defects. Conclusions: We concluded that lmo4a holds a regulative effect on the Bmp pathway and is required for the normal development of zebrafish inner ear. Our study pointed out the conservatism of LMO4 in inner ear development between mammals and zebrafish as well as shed more light on the molecular mechanisms behind it. Further research is needed to distinguish the relationships between lmo4 and the Bmp pathway, which may lead to diagnostic and therapeutic approaches towards human inner ear malformation. MDPI 2023-06-28 /pmc/articles/PMC10378989/ /pubmed/37510276 http://dx.doi.org/10.3390/genes14071371 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Sun, Le
Ping, Lu
Gao, Ruzhen
Zhang, Bo
Chen, Xiaowei
lmo4a Contributes to Zebrafish Inner Ear and Vestibular Development via Regulation of the Bmp Pathway
title lmo4a Contributes to Zebrafish Inner Ear and Vestibular Development via Regulation of the Bmp Pathway
title_full lmo4a Contributes to Zebrafish Inner Ear and Vestibular Development via Regulation of the Bmp Pathway
title_fullStr lmo4a Contributes to Zebrafish Inner Ear and Vestibular Development via Regulation of the Bmp Pathway
title_full_unstemmed lmo4a Contributes to Zebrafish Inner Ear and Vestibular Development via Regulation of the Bmp Pathway
title_short lmo4a Contributes to Zebrafish Inner Ear and Vestibular Development via Regulation of the Bmp Pathway
title_sort lmo4a contributes to zebrafish inner ear and vestibular development via regulation of the bmp pathway
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378989/
https://www.ncbi.nlm.nih.gov/pubmed/37510276
http://dx.doi.org/10.3390/genes14071371
work_keys_str_mv AT sunle lmo4acontributestozebrafishinnerearandvestibulardevelopmentviaregulationofthebmppathway
AT pinglu lmo4acontributestozebrafishinnerearandvestibulardevelopmentviaregulationofthebmppathway
AT gaoruzhen lmo4acontributestozebrafishinnerearandvestibulardevelopmentviaregulationofthebmppathway
AT zhangbo lmo4acontributestozebrafishinnerearandvestibulardevelopmentviaregulationofthebmppathway
AT chenxiaowei lmo4acontributestozebrafishinnerearandvestibulardevelopmentviaregulationofthebmppathway