Cargando…
Unstable Points, Ergodicity and Born’s Rule in 2d Bohmian Systems
We study the role of unstable points in the Bohmian flow of a 2d system composed of two non-interacting harmonic oscillators. In particular, we study the unstable points in the inertial frame of reference as well as in the frame of reference of the moving nodal points, in cases with 1, 2 and multipl...
Autores principales: | Tzemos, Athanasios C., Contopoulos, George |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10379029/ https://www.ncbi.nlm.nih.gov/pubmed/37510036 http://dx.doi.org/10.3390/e25071089 |
Ejemplares similares
-
On Ontological Alternatives to Bohmian Mechanics
por: Filk, Thomas
Publicado: (2018) -
Experimental nonlocal and surreal Bohmian trajectories
por: Mahler, Dylan H., et al.
Publicado: (2016) -
Bohmian mechanics, open quantum systems and continuous measurements
por: Nassar, Antonio B, et al.
Publicado: (2017) -
Applied Bohmian mechanics: from nanoscale systems to cosmology
por: Oriols, Xavier, et al.
Publicado: (2012) -
Applied Bohmian mechanics: from nanoscale systems to cosmology
por: Pladevall, Xavier Oriols, et al.
Publicado: (2019)