Cargando…

Kolmogorov Entropy for Convergence Rate in Incomplete Functional Time Series: Application to Percentile and Cumulative Estimation in High Dimensional Data

The convergence rate for free-distribution functional data analyses is challenging. It requires some advanced pure mathematics functional analysis tools. This paper aims to bring several contributions to the existing functional data analysis literature. First, we prove in this work that Kolmogorov e...

Descripción completa

Detalles Bibliográficos
Autores principales: Litimein, Ouahiba, Alshahrani, Fatimah, Bouzebda, Salim, Laksaci, Ali, Mechab, Boubaker
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10379031/
https://www.ncbi.nlm.nih.gov/pubmed/37510055
http://dx.doi.org/10.3390/e25071108
_version_ 1785079912550367232
author Litimein, Ouahiba
Alshahrani, Fatimah
Bouzebda, Salim
Laksaci, Ali
Mechab, Boubaker
author_facet Litimein, Ouahiba
Alshahrani, Fatimah
Bouzebda, Salim
Laksaci, Ali
Mechab, Boubaker
author_sort Litimein, Ouahiba
collection PubMed
description The convergence rate for free-distribution functional data analyses is challenging. It requires some advanced pure mathematics functional analysis tools. This paper aims to bring several contributions to the existing functional data analysis literature. First, we prove in this work that Kolmogorov entropy is a fundamental tool in characterizing the convergence rate of the local linear estimation. Precisely, we use this tool to derive the uniform convergence rate of the local linear estimation of the conditional cumulative distribution function and the local linear estimation conditional quantile function. Second, a central limit theorem for the proposed estimators is established. These results are proved under general assumptions, allowing for the incomplete functional time series case to be covered. Specifically, we model the correlation using the ergodic assumption and assume that the response variable is collected with missing at random. Finally, we conduct Monte Carlo simulations to assess the finite sample performance of the proposed estimators.
format Online
Article
Text
id pubmed-10379031
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103790312023-07-29 Kolmogorov Entropy for Convergence Rate in Incomplete Functional Time Series: Application to Percentile and Cumulative Estimation in High Dimensional Data Litimein, Ouahiba Alshahrani, Fatimah Bouzebda, Salim Laksaci, Ali Mechab, Boubaker Entropy (Basel) Article The convergence rate for free-distribution functional data analyses is challenging. It requires some advanced pure mathematics functional analysis tools. This paper aims to bring several contributions to the existing functional data analysis literature. First, we prove in this work that Kolmogorov entropy is a fundamental tool in characterizing the convergence rate of the local linear estimation. Precisely, we use this tool to derive the uniform convergence rate of the local linear estimation of the conditional cumulative distribution function and the local linear estimation conditional quantile function. Second, a central limit theorem for the proposed estimators is established. These results are proved under general assumptions, allowing for the incomplete functional time series case to be covered. Specifically, we model the correlation using the ergodic assumption and assume that the response variable is collected with missing at random. Finally, we conduct Monte Carlo simulations to assess the finite sample performance of the proposed estimators. MDPI 2023-07-24 /pmc/articles/PMC10379031/ /pubmed/37510055 http://dx.doi.org/10.3390/e25071108 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Litimein, Ouahiba
Alshahrani, Fatimah
Bouzebda, Salim
Laksaci, Ali
Mechab, Boubaker
Kolmogorov Entropy for Convergence Rate in Incomplete Functional Time Series: Application to Percentile and Cumulative Estimation in High Dimensional Data
title Kolmogorov Entropy for Convergence Rate in Incomplete Functional Time Series: Application to Percentile and Cumulative Estimation in High Dimensional Data
title_full Kolmogorov Entropy for Convergence Rate in Incomplete Functional Time Series: Application to Percentile and Cumulative Estimation in High Dimensional Data
title_fullStr Kolmogorov Entropy for Convergence Rate in Incomplete Functional Time Series: Application to Percentile and Cumulative Estimation in High Dimensional Data
title_full_unstemmed Kolmogorov Entropy for Convergence Rate in Incomplete Functional Time Series: Application to Percentile and Cumulative Estimation in High Dimensional Data
title_short Kolmogorov Entropy for Convergence Rate in Incomplete Functional Time Series: Application to Percentile and Cumulative Estimation in High Dimensional Data
title_sort kolmogorov entropy for convergence rate in incomplete functional time series: application to percentile and cumulative estimation in high dimensional data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10379031/
https://www.ncbi.nlm.nih.gov/pubmed/37510055
http://dx.doi.org/10.3390/e25071108
work_keys_str_mv AT litimeinouahiba kolmogoroventropyforconvergencerateinincompletefunctionaltimeseriesapplicationtopercentileandcumulativeestimationinhighdimensionaldata
AT alshahranifatimah kolmogoroventropyforconvergencerateinincompletefunctionaltimeseriesapplicationtopercentileandcumulativeestimationinhighdimensionaldata
AT bouzebdasalim kolmogoroventropyforconvergencerateinincompletefunctionaltimeseriesapplicationtopercentileandcumulativeestimationinhighdimensionaldata
AT laksaciali kolmogoroventropyforconvergencerateinincompletefunctionaltimeseriesapplicationtopercentileandcumulativeestimationinhighdimensionaldata
AT mechabboubaker kolmogoroventropyforconvergencerateinincompletefunctionaltimeseriesapplicationtopercentileandcumulativeestimationinhighdimensionaldata