Cargando…
Kernel-Free Quadratic Surface Regression for Multi-Class Classification
For multi-class classification problems, a new kernel-free nonlinear classifier is presented, called the hard quadratic surface least squares regression (HQSLSR). It combines the benefits of the least squares loss function and quadratic kernel-free trick. The optimization problem of HQSLSR is convex...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10379108/ https://www.ncbi.nlm.nih.gov/pubmed/37510050 http://dx.doi.org/10.3390/e25071103 |
Sumario: | For multi-class classification problems, a new kernel-free nonlinear classifier is presented, called the hard quadratic surface least squares regression (HQSLSR). It combines the benefits of the least squares loss function and quadratic kernel-free trick. The optimization problem of HQSLSR is convex and unconstrained, making it easy to solve. Further, to improve the generalization ability of HQSLSR, a softened version (SQSLSR) is proposed by introducing an [Formula: see text]-dragging technique, which can enlarge the between-class distance. The optimization problem of SQSLSR is solved by designing an alteration iteration algorithm. The convergence, interpretability and computational complexity of our methods are addressed in a theoretical analysis. The visualization results on five artificial datasets demonstrate that the obtained regression function in each category has geometric diversity and the advantage of the [Formula: see text]-dragging technique. Furthermore, experimental results on benchmark datasets show that our methods perform comparably to some state-of-the-art classifiers. |
---|