Cargando…

Transcriptome-Wide Identification and Response Pattern Analysis of the Salix integra NAC Transcription Factor in Response to Pb Stress

The NAC (NAM-ATAF1/2-CUC) transcription factor family is one of the largest plant-specific transcription factor families, playing an important role in plant growth and development and abiotic stress response. As a short-rotation woody plant, Salix integra (S. integra) has high lead (Pb) phytoremedia...

Descripción completa

Detalles Bibliográficos
Autores principales: Xin, Yue, Huang, Ruifang, Xu, Meng, Xu, Li’an
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10379125/
https://www.ncbi.nlm.nih.gov/pubmed/37511094
http://dx.doi.org/10.3390/ijms241411334
_version_ 1785079936335216640
author Xin, Yue
Huang, Ruifang
Xu, Meng
Xu, Li’an
author_facet Xin, Yue
Huang, Ruifang
Xu, Meng
Xu, Li’an
author_sort Xin, Yue
collection PubMed
description The NAC (NAM-ATAF1/2-CUC) transcription factor family is one of the largest plant-specific transcription factor families, playing an important role in plant growth and development and abiotic stress response. As a short-rotation woody plant, Salix integra (S. integra) has high lead (Pb) phytoremediation potential. To understand the role of NAC in S. integra Pb tolerance, 53 SiNAC transcripts were identified using third-generation and next-generation transcriptomic data from S. integra exposed to Pb stress, and a phylogenetic analysis revealed 11 subfamilies. A sequence alignment showed that multiple subfamilies represented by TIP and ATAF had a gene that produced more than one transcript under Pb stress, and different transcripts had different responses to Pb. By analyzing the expression profiles of SiNACs at 9 Pb stress time points, 41 of 53 SiNACs were found to be significantly responsive to Pb. Short time-series expression miner (STEM) analysis revealed that 41 SiNACs had two significant Pb positive response patterns (early and late), both containing 10 SiNACs. The SiNACs with the most significant Pb response were mainly from the ATAF and NAP subfamilies. Therefore, 4 and 3 SiNACs from the ATAF and NAP subfamilies, respectively, were selected as candidate Pb-responsive SiNACs for further structural and functional analysis. The RT-qPCR results of 7 transcripts also confirmed the different Pb response patterns of the ATAF and NAP subfamilies. SiNAC004 and SiNAC120, which were randomly selected from two subfamilies, were confirmed to be nuclear localization proteins by subcellular localization experiments. Functional prediction analysis of the associated transcripts of seven candidate SiNACs showed that the target pathways of ATAF subfamily SiNACs were “sulfur metabolism” and “glutathione metabolism”, and the target pathways of NAP subfamily SiNACs were “ribosome” and “phenylpropanoid biosynthesis”. This study not only identified two NAC subfamilies with different Pb response patterns but also identified Pb-responsive SiNACs that could provide a basis for subsequent gene function verification.
format Online
Article
Text
id pubmed-10379125
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103791252023-07-29 Transcriptome-Wide Identification and Response Pattern Analysis of the Salix integra NAC Transcription Factor in Response to Pb Stress Xin, Yue Huang, Ruifang Xu, Meng Xu, Li’an Int J Mol Sci Article The NAC (NAM-ATAF1/2-CUC) transcription factor family is one of the largest plant-specific transcription factor families, playing an important role in plant growth and development and abiotic stress response. As a short-rotation woody plant, Salix integra (S. integra) has high lead (Pb) phytoremediation potential. To understand the role of NAC in S. integra Pb tolerance, 53 SiNAC transcripts were identified using third-generation and next-generation transcriptomic data from S. integra exposed to Pb stress, and a phylogenetic analysis revealed 11 subfamilies. A sequence alignment showed that multiple subfamilies represented by TIP and ATAF had a gene that produced more than one transcript under Pb stress, and different transcripts had different responses to Pb. By analyzing the expression profiles of SiNACs at 9 Pb stress time points, 41 of 53 SiNACs were found to be significantly responsive to Pb. Short time-series expression miner (STEM) analysis revealed that 41 SiNACs had two significant Pb positive response patterns (early and late), both containing 10 SiNACs. The SiNACs with the most significant Pb response were mainly from the ATAF and NAP subfamilies. Therefore, 4 and 3 SiNACs from the ATAF and NAP subfamilies, respectively, were selected as candidate Pb-responsive SiNACs for further structural and functional analysis. The RT-qPCR results of 7 transcripts also confirmed the different Pb response patterns of the ATAF and NAP subfamilies. SiNAC004 and SiNAC120, which were randomly selected from two subfamilies, were confirmed to be nuclear localization proteins by subcellular localization experiments. Functional prediction analysis of the associated transcripts of seven candidate SiNACs showed that the target pathways of ATAF subfamily SiNACs were “sulfur metabolism” and “glutathione metabolism”, and the target pathways of NAP subfamily SiNACs were “ribosome” and “phenylpropanoid biosynthesis”. This study not only identified two NAC subfamilies with different Pb response patterns but also identified Pb-responsive SiNACs that could provide a basis for subsequent gene function verification. MDPI 2023-07-12 /pmc/articles/PMC10379125/ /pubmed/37511094 http://dx.doi.org/10.3390/ijms241411334 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Xin, Yue
Huang, Ruifang
Xu, Meng
Xu, Li’an
Transcriptome-Wide Identification and Response Pattern Analysis of the Salix integra NAC Transcription Factor in Response to Pb Stress
title Transcriptome-Wide Identification and Response Pattern Analysis of the Salix integra NAC Transcription Factor in Response to Pb Stress
title_full Transcriptome-Wide Identification and Response Pattern Analysis of the Salix integra NAC Transcription Factor in Response to Pb Stress
title_fullStr Transcriptome-Wide Identification and Response Pattern Analysis of the Salix integra NAC Transcription Factor in Response to Pb Stress
title_full_unstemmed Transcriptome-Wide Identification and Response Pattern Analysis of the Salix integra NAC Transcription Factor in Response to Pb Stress
title_short Transcriptome-Wide Identification and Response Pattern Analysis of the Salix integra NAC Transcription Factor in Response to Pb Stress
title_sort transcriptome-wide identification and response pattern analysis of the salix integra nac transcription factor in response to pb stress
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10379125/
https://www.ncbi.nlm.nih.gov/pubmed/37511094
http://dx.doi.org/10.3390/ijms241411334
work_keys_str_mv AT xinyue transcriptomewideidentificationandresponsepatternanalysisofthesalixintegranactranscriptionfactorinresponsetopbstress
AT huangruifang transcriptomewideidentificationandresponsepatternanalysisofthesalixintegranactranscriptionfactorinresponsetopbstress
AT xumeng transcriptomewideidentificationandresponsepatternanalysisofthesalixintegranactranscriptionfactorinresponsetopbstress
AT xulian transcriptomewideidentificationandresponsepatternanalysisofthesalixintegranactranscriptionfactorinresponsetopbstress