Cargando…

Transcriptomic Analysis of the Developing Testis and Spermatogenesis in Qianbei Ma Goats

Reproductive competence in male mammals depends on testicular function. Testicular development and spermatogenesis in goats involve highly complex physiological processes. In this study, six testes were, respectively, obtained from each age group, immature (1 month), sexually mature (6 months) and p...

Descripción completa

Detalles Bibliográficos
Autores principales: Zou, Yue, Chen, Xiang, Tian, Xingzhou, Guo, Wei, Ruan, Yong, Tang, Wen, Fu, Kaibin, Ji, Taotao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10379175/
https://www.ncbi.nlm.nih.gov/pubmed/37510239
http://dx.doi.org/10.3390/genes14071334
Descripción
Sumario:Reproductive competence in male mammals depends on testicular function. Testicular development and spermatogenesis in goats involve highly complex physiological processes. In this study, six testes were, respectively, obtained from each age group, immature (1 month), sexually mature (6 months) and physically mature (12 months old) Qianbei Ma goats. RNA-Seq was performed to assess testicular mRNA expression in Qianbei Ma goats at different developmental stages. Totally, 18 libraries were constructed to screen genes and pathways involved in testis development and spermatogenesis. Totally, 9724 upregulated and 4153 downregulated DEGs were found between immature (I) and sexually mature (S) samples; 7 upregulated and 3 downregulated DEGs were found between sexually mature (S) and physically mature (P) samples, and about 4% of the DEGs underwent alternative splicing events between I and S. Select genes were assessed by qRT-PCR, corroborating RNA-Seq findings. The detected genes have key roles in multiple developmental stages of goat testicular development and spermatogenesis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to determine differentially expressed genes (DEGs). GO analysis revealed DEGs between S and P contributed to “reproduction process”, “channel activity” and “cell periphery part” between I and S, and in “ion transport process”, “channel activity” and “transporter complex part”. KEGG analysis suggested the involvement of “glycerolipid metabolism”, “steroid hormone biosynthesis” and “MAPK signaling pathway” in testis development and spermatogenesis. Genes including IGF1, TGFB1, TGFBR1 and EGFR may control the development of the testis from immature to sexually mature, which might be important candidate genes for the development of goat testis. The current study provides novel insights into goat testicular development and spermatogenesis.