Cargando…

Changes in Lipids and Proteins of Common Carp (Cyprinus carpio) Fillets under Frozen Storage and Establishment of a Radial Basis Function Neural Network (RBFNN)

Storage via freezing remains the most effective approach for fish preservation. However, lipid oxidation and protein denaturation still occur during storage, along with nutritional loss. The extent of lipid alteration and protein denaturation are associated with human health defects. To precisely pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Kong, Chunli, Duan, Caiping, Zhang, Yixuan, Shi, Ce, Luo, Yongkang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10379316/
https://www.ncbi.nlm.nih.gov/pubmed/37509833
http://dx.doi.org/10.3390/foods12142741
_version_ 1785079986080710656
author Kong, Chunli
Duan, Caiping
Zhang, Yixuan
Shi, Ce
Luo, Yongkang
author_facet Kong, Chunli
Duan, Caiping
Zhang, Yixuan
Shi, Ce
Luo, Yongkang
author_sort Kong, Chunli
collection PubMed
description Storage via freezing remains the most effective approach for fish preservation. However, lipid oxidation and protein denaturation still occur during storage, along with nutritional loss. The extent of lipid alteration and protein denaturation are associated with human health defects. To precisely predict common carp (Cyprinus carpio) nutritional quality change during frozen storage, here, we first determined lipid oxidation and hydrolysis and protein denaturation of common carp fillets during 17 weeks of frozen preservation at 261 K, 253 K, and 245 K. Results showed that the content of thiobarbituric acid reactive substances (TBARS) and free fatty acids (FFA) were significantly increased. However, salt-soluble protein (SSP) content, Ca(2+)-ATPase activity, and total sulfhydryl (SH) content kept decreasing during frozen storage, with SSP content decreasing by 64.82%, 38.14%, and 11.24%, respectively, Ca(2+)-ATP enzyme activity decreasing to 12.50%, 18.52%, and 28.57% Piμmol/mg/min, and SH values decreasing by 70.71%, 64.92%, and 56.51% at 261 K, 253 K, and 245 K, respectively. The values at 261 K decreased more than that at 253 K and 245 K (p < 0.05). Ca(2+)-ATPase activity was positively correlated (r = 0.96) with SH content. Afterwards, based on the results of the above chemical experiments, we developed a radial basis function neural network (RBFNN) to predict the modification of lipid and protein of common carp fillets during frozen storage. Results showed that all the relative errors of experimental and predicted values were within ±10%. In summary, the quality of common carp can be well protected at 245 K, and the established RBFNN could effectively predict the quality of the common carp under frozen conditions at 261–245 K.
format Online
Article
Text
id pubmed-10379316
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103793162023-07-29 Changes in Lipids and Proteins of Common Carp (Cyprinus carpio) Fillets under Frozen Storage and Establishment of a Radial Basis Function Neural Network (RBFNN) Kong, Chunli Duan, Caiping Zhang, Yixuan Shi, Ce Luo, Yongkang Foods Article Storage via freezing remains the most effective approach for fish preservation. However, lipid oxidation and protein denaturation still occur during storage, along with nutritional loss. The extent of lipid alteration and protein denaturation are associated with human health defects. To precisely predict common carp (Cyprinus carpio) nutritional quality change during frozen storage, here, we first determined lipid oxidation and hydrolysis and protein denaturation of common carp fillets during 17 weeks of frozen preservation at 261 K, 253 K, and 245 K. Results showed that the content of thiobarbituric acid reactive substances (TBARS) and free fatty acids (FFA) were significantly increased. However, salt-soluble protein (SSP) content, Ca(2+)-ATPase activity, and total sulfhydryl (SH) content kept decreasing during frozen storage, with SSP content decreasing by 64.82%, 38.14%, and 11.24%, respectively, Ca(2+)-ATP enzyme activity decreasing to 12.50%, 18.52%, and 28.57% Piμmol/mg/min, and SH values decreasing by 70.71%, 64.92%, and 56.51% at 261 K, 253 K, and 245 K, respectively. The values at 261 K decreased more than that at 253 K and 245 K (p < 0.05). Ca(2+)-ATPase activity was positively correlated (r = 0.96) with SH content. Afterwards, based on the results of the above chemical experiments, we developed a radial basis function neural network (RBFNN) to predict the modification of lipid and protein of common carp fillets during frozen storage. Results showed that all the relative errors of experimental and predicted values were within ±10%. In summary, the quality of common carp can be well protected at 245 K, and the established RBFNN could effectively predict the quality of the common carp under frozen conditions at 261–245 K. MDPI 2023-07-19 /pmc/articles/PMC10379316/ /pubmed/37509833 http://dx.doi.org/10.3390/foods12142741 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kong, Chunli
Duan, Caiping
Zhang, Yixuan
Shi, Ce
Luo, Yongkang
Changes in Lipids and Proteins of Common Carp (Cyprinus carpio) Fillets under Frozen Storage and Establishment of a Radial Basis Function Neural Network (RBFNN)
title Changes in Lipids and Proteins of Common Carp (Cyprinus carpio) Fillets under Frozen Storage and Establishment of a Radial Basis Function Neural Network (RBFNN)
title_full Changes in Lipids and Proteins of Common Carp (Cyprinus carpio) Fillets under Frozen Storage and Establishment of a Radial Basis Function Neural Network (RBFNN)
title_fullStr Changes in Lipids and Proteins of Common Carp (Cyprinus carpio) Fillets under Frozen Storage and Establishment of a Radial Basis Function Neural Network (RBFNN)
title_full_unstemmed Changes in Lipids and Proteins of Common Carp (Cyprinus carpio) Fillets under Frozen Storage and Establishment of a Radial Basis Function Neural Network (RBFNN)
title_short Changes in Lipids and Proteins of Common Carp (Cyprinus carpio) Fillets under Frozen Storage and Establishment of a Radial Basis Function Neural Network (RBFNN)
title_sort changes in lipids and proteins of common carp (cyprinus carpio) fillets under frozen storage and establishment of a radial basis function neural network (rbfnn)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10379316/
https://www.ncbi.nlm.nih.gov/pubmed/37509833
http://dx.doi.org/10.3390/foods12142741
work_keys_str_mv AT kongchunli changesinlipidsandproteinsofcommoncarpcyprinuscarpiofilletsunderfrozenstorageandestablishmentofaradialbasisfunctionneuralnetworkrbfnn
AT duancaiping changesinlipidsandproteinsofcommoncarpcyprinuscarpiofilletsunderfrozenstorageandestablishmentofaradialbasisfunctionneuralnetworkrbfnn
AT zhangyixuan changesinlipidsandproteinsofcommoncarpcyprinuscarpiofilletsunderfrozenstorageandestablishmentofaradialbasisfunctionneuralnetworkrbfnn
AT shice changesinlipidsandproteinsofcommoncarpcyprinuscarpiofilletsunderfrozenstorageandestablishmentofaradialbasisfunctionneuralnetworkrbfnn
AT luoyongkang changesinlipidsandproteinsofcommoncarpcyprinuscarpiofilletsunderfrozenstorageandestablishmentofaradialbasisfunctionneuralnetworkrbfnn