Cargando…

Variation in Rice Plastid Genomes in Wide Crossing Reveals Dynamic Nucleo–Cytoplasmic Interaction

Plastid genomes (plastomes) of angiosperms are well known for their relative stability in size, structure, and gene content. However, little is known about their heredity and variations in wide crossing. To such an end, the plastomes of five representative rice backcross inbred lines (BILs) develope...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Weilong, Zou, Jianing, Wang, Jiajia, Li, Nengwu, Luo, Xiaoyun, Jiang, Xiaofen, Li, Shaoqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10379430/
https://www.ncbi.nlm.nih.gov/pubmed/37510315
http://dx.doi.org/10.3390/genes14071411
Descripción
Sumario:Plastid genomes (plastomes) of angiosperms are well known for their relative stability in size, structure, and gene content. However, little is known about their heredity and variations in wide crossing. To such an end, the plastomes of five representative rice backcross inbred lines (BILs) developed from crosses of O. glaberrima/O. sativa were analyzed. We found that the size of all plastomes was about 134,580 bp, with a quadripartite structure that included a pair of inverted repeat (IR) regions, a small single-copy (SSC) region and a large single-copy (LSC) region. They contained 76 protein genes, 4 rRNA genes, and 30 tRNA genes. Although their size, structure, and gene content were stable, repeat-mediated recombination, gene expression, and RNA editing were extensively changed between the maternal line and the BILs. These novel discoveries demonstrate that wide crossing causes not only nuclear genomic recombination, but also plastome variation in plants, and that the plastome plays a critical role in coordinating the nuclear–cytoplasmic interaction.