Cargando…

Microplastic Pollution Prevention: The Need for Robust Policy Interventions to Close the Loopholes in Current Waste Management Practices

Plastic materials that are less than 5 mm in size are defined as Microplastics (MPs). MPs that are intentionally produced are called primary MPs; however, the most abundant type in the environment consists of the remainder created by the fragmentation of large plastic debris through physical, chemic...

Descripción completa

Detalles Bibliográficos
Autores principales: Hettiarachchi, Hiroshan, Meegoda, Jay N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10379618/
https://www.ncbi.nlm.nih.gov/pubmed/37510666
http://dx.doi.org/10.3390/ijerph20146434
Descripción
Sumario:Plastic materials that are less than 5 mm in size are defined as Microplastics (MPs). MPs that are intentionally produced are called primary MPs; however, the most abundant type in the environment consists of the remainder created by the fragmentation of large plastic debris through physical, chemical, and oxidative processes, which are called secondary MPs. Due to their abundance in the environment, poor degradability, toxicological properties, and negative impact on aquatic and terrestrial organisms, including humans, MP pollution has become a global environmental issue. Combatting MP pollution requires both remediation and preventive measures. Although remediation is a must, considering where the technology stands today, it may take long time to make it happen. Prevention, on the other hand, can be and should be done now. However, the effectiveness of preventive measures depends heavily on how well MP escape routes are researched and understood. In this research, we argue that such escape routes (rather, loopholes) exist not only due to mismanaged plastic waste, but also due to cracks in the current waste management systems. One known MP loophole is facilitated by wastewater treatment plants (WWTP). The inability of existing WWTP to retain finer MPs, which are finally released to water bodies together with the treated wastewater, along with the return of captured larger MPs back to landfills and their release into the environment through land applications, are a few examples. Organic waste composting and upcycling of waste incineration ash provide other MP escape pathways. In addition, it is important to understand that the plastics that are in current circulation (active use as well as idling) are responsible for producing MPs through regular wear and tear. Closing these loopholes may be best attempted through policy interventions.