Cargando…
Spatial Colinear but Broken Temporal Expression of Duplicated ParaHox Genes in Asexually Reproducing Annelids, Nais communis and Pristina longiseta
ParaHox genes are key developmental regulators involved in the patterning of the digestive tract along the anteroposterior axis and the development of the nervous system. Most studies have focused on the function of these genes in embryogenesis, while their expression patterns in postembryonic devel...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10379933/ https://www.ncbi.nlm.nih.gov/pubmed/37510405 http://dx.doi.org/10.3390/genes14071501 |
Sumario: | ParaHox genes are key developmental regulators involved in the patterning of the digestive tract along the anteroposterior axis and the development of the nervous system. Most studies have focused on the function of these genes in embryogenesis, while their expression patterns in postembryonic development often remain unknown. In this study, we identified for the first time all ParaHox orthologs in two naidid oligochaetes, N. communis and P. longiseta, and described their expression patterns during normal growth and fission in these animals. We showed that Gsx and Cdx are presented by two paralogs, while Xlox is a single copy gene in both species. Using whole-mount in situ hybridization, we also found that orthologs, except for the Xlox gene, have similar activity patterns with minor differences in details, while the expression patterns of paralogs can differ significantly. However, all these genes are involved in axial patterning and/or in tissue remodeling during growth and asexual reproduction in naidids. Moreover, during paratomic fission, these genes are expressed with spatial colinearity but temporal colinearity is broken. The results of this study may be evidence of the functional diversification of duplicated genes and suggest involvement of the ParaHox genes in whole-body patterning during growth and asexual reproduction in annelids. |
---|