Cargando…
Application of SHAP for Explainable Machine Learning on Age-Based Subgrouping Mammography Questionnaire Data for Positive Mammography Prediction and Risk Factor Identification
Mammography is considered the gold standard for breast cancer screening. Multiple risk factors that affect breast cancer development have been identified; however, there is an ongoing debate regarding the significance of these factors. Machine learning (ML) models and Shapley Additive Explanation (S...
Autores principales: | Sun, Jeffrey, Sun, Cheuk-Kay, Tang, Yun-Xuan, Liu, Tzu-Chi, Lu, Chi-Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10379972/ https://www.ncbi.nlm.nih.gov/pubmed/37510441 http://dx.doi.org/10.3390/healthcare11142000 |
Ejemplares similares
-
An Integrated Machine Learning Scheme for Predicting Mammographic Anomalies in High-Risk Individuals Using Questionnaire-Based Predictors
por: Sun, Cheuk-Kay, et al.
Publicado: (2022) -
Positional SHAP (PoSHAP) for Interpretation of machine learning models trained from biological sequences
por: Dickinson, Quinn, et al.
Publicado: (2022) -
Machine learning explainability in nasopharyngeal cancer survival using LIME and SHAP
por: Alabi, Rasheed Omobolaji, et al.
Publicado: (2023) -
Flawed methods explain the effect of mammography screening in Nijmegen
por: Jørgensen, K J
Publicado: (2011) -
Reply: Flawed methods explain the effect of mammography screening in Nijmegen
por: Verbeek, A L M, et al.
Publicado: (2011)