Cargando…

An Ex Vivo Electroretinographic Apparatus for the mL-Scale Testing of Drugs to One Day and Beyond

When screening new drugs to treat retinal diseases, ex vivo electroretinography (ERG) potentially combines the experimental throughput of its traditional in vivo counterpart, with greater mechanistic insight and reproducible delivery. To date, this technique was used in experiments with open loop su...

Descripción completa

Detalles Bibliográficos
Autores principales: Cangiano, Lorenzo, Asteriti, Sabrina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380068/
https://www.ncbi.nlm.nih.gov/pubmed/37511106
http://dx.doi.org/10.3390/ijms241411346
Descripción
Sumario:When screening new drugs to treat retinal diseases, ex vivo electroretinography (ERG) potentially combines the experimental throughput of its traditional in vivo counterpart, with greater mechanistic insight and reproducible delivery. To date, this technique was used in experiments with open loop superfusion and lasting up to a few hours. Here, we present a compact apparatus that provides continuous and simultaneous recordings of the scotopic a-waves from four mouse retinas for much longer durations. Crucially, each retina can be incubated at 37 °C in only 2 mL of static medium, enabling the testing of very expensive drugs or nano devices. Light sensitivity and response kinetics of these preparations remain in the physiological range throughout incubation, displaying only very slow drifts. As an example application, we showed that barium, a potassium channel blocker used to abolish the glial component of the ERG, displayed no overt side effects on photoreceptors over several hours. In another example, we fully regenerated a partially bleached retina using a minimal quantity of 9-cis-retinal. Finally, we demonstrated that including antibiotic in the incubation medium extends physiological light responses to over one day. This system represents a necessary stepping stone towards the goal of combining ERG recordings with organotypically cultured retinas.