Cargando…

Conferring High IAA Productivity on Low-IAA-Producing Organisms with PonAAS2, an Aromatic Aldehyde Synthase of a Galling Sawfly, and Identification of Its Inhibitor

SIMPLE SUMMARY: The gall-inducing sawfly (Pontania sp.) possesses high concentrations of indoleacetic acid (IAA; the active form of the phytohormone auxin), which may play an important role in gall induction. Among the insect aromatic aldehyde synthases (AASs) studied to date, sawfly PonAAS2 is the...

Descripción completa

Detalles Bibliográficos
Autores principales: Hiura, Takeshi, Yoshida, Hibiki, Miyata, Umi, Asami, Tadao, Suzuki, Yoshihito
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380194/
https://www.ncbi.nlm.nih.gov/pubmed/37504604
http://dx.doi.org/10.3390/insects14070598
Descripción
Sumario:SIMPLE SUMMARY: The gall-inducing sawfly (Pontania sp.) possesses high concentrations of indoleacetic acid (IAA; the active form of the phytohormone auxin), which may play an important role in gall induction. Among the insect aromatic aldehyde synthases (AASs) studied to date, sawfly PonAAS2 is the only AAS involved in IAA biosynthesis that produces indoleacetaldehyde from Trp. In this study, we show that the introduction of the PonAAS2 gene is able to confer high IAA productivity on other organisms, using Caenorhabditis elegans as the model system. We also identified a specific inhibitor of PonAAS2. ABSTRACT: Gall-inducing insects often contain high concentrations of phytohormones, such as auxin and cytokinin, which are suggested to be involved in gall induction, but no conclusive evidence has yet been obtained. There are two possible approaches to investigating the importance of phytohormones in gall induction: demonstrating either that high phytohormone productivity can induce gall-inducing ability in non-gall-inducing insects or that the gall-inducing ability is inhibited when phytohormone productivity in galling insects is suppressed. In this study, we show that the overexpression of PonAAS2, which encodes an aromatic aldehyde synthase (AAS) responsible for the rate-limiting step in indoleacetic acid (IAA) biosynthesis in a galling sawfly (Pontania sp.) that contains high levels of endogenous IAA, conferred high IAA productivity on Caenorhabditis elegans, as the model system. This result strongly suggests that PonAAS2 can also confer high IAA productivity on low-IAA-producing insects. We also successfully identified an inhibitor of PonAAS2 in a chemical library. This highly selective inhibitor showed stronger inhibitory activity against AAS than against aromatic amino acid decarboxylase, which belongs to the same superfamily as AAS. We also confirm that this inhibitor clearly inhibited IAA productivity in the high-IAA-producing C. elegans engineered here.