Cargando…

Derivation of Human Extraembryonic Mesoderm-like Cells from Primitive Endoderm

In vitro modeling of human peri-gastrulation development is a valuable tool for understanding embryogenetic mechanisms. The extraembryonic mesoderm (ExM) is crucial in supporting embryonic development by forming tissues such as the yolk sac, allantois, and chorionic villi. However, the origin of hum...

Descripción completa

Detalles Bibliográficos
Autores principales: Farkas, Karin, Ferretti, Elisabetta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380231/
https://www.ncbi.nlm.nih.gov/pubmed/37511125
http://dx.doi.org/10.3390/ijms241411366
Descripción
Sumario:In vitro modeling of human peri-gastrulation development is a valuable tool for understanding embryogenetic mechanisms. The extraembryonic mesoderm (ExM) is crucial in supporting embryonic development by forming tissues such as the yolk sac, allantois, and chorionic villi. However, the origin of human ExM remains only partially understood. While evidence suggests a primitive endoderm (PrE) origin based on morphological findings, current in vitro models use epiblast-like cells. To address this gap, we developed a protocol to generate ExM-like cells from PrE-like cell line called naïve extraembryonic endoderm (nEnd). We identified the ExM-like cells by specific markers (LUM and ANXA1). Moreover, these in vitro-produced ExM cells displayed angiogenic potential on a soft matrix, mirroring their physiological role in vasculogenesis. By integrating single-cell RNA sequencing (scRNAseq) data, we found that the ExM-like cells clustered with the LUM/ANXA1-rich cell populations of the gastrulating embryo, indicating similarity between in vitro and ex utero cell populations. This study confirms the derivation of ExM from PrE and establishes a cell culture system that can be utilized to investigate ExM during human peri-gastrulation development, both in monolayer cultures and more complex models.