Cargando…
GSK3β Inhibition Ameliorates Atherosclerotic Calcification
Endothelial-mesenchymal transition (EndMT) drives endothelium to contribute to atherosclerotic calcification. In a previous study, we showed that glycogen synthase kinase-3β (GSK3β) inhibition induced β-catenin and reduced mothers against DPP homolog 1 (SMAD1) in order to redirect osteoblast-like ce...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380320/ https://www.ncbi.nlm.nih.gov/pubmed/37511396 http://dx.doi.org/10.3390/ijms241411638 |
Sumario: | Endothelial-mesenchymal transition (EndMT) drives endothelium to contribute to atherosclerotic calcification. In a previous study, we showed that glycogen synthase kinase-3β (GSK3β) inhibition induced β-catenin and reduced mothers against DPP homolog 1 (SMAD1) in order to redirect osteoblast-like cells towards endothelial lineage, thereby reducing vascular calcification in Matrix Gla Protein (Mgp) deficiency and diabetic Ins2(Akita/wt) mice. Here, we report that GSK3β inhibition or endothelial-specific deletion of GSK3β reduces atherosclerotic calcification. We also find that alterations in β-catenin and SMAD1 induced by GSK3β inhibition in the aortas of Apoe(−/−) mice are similar to Mgp(−/−) mice. Together, our results suggest that GSK3β inhibition reduces vascular calcification in atherosclerotic lesions through a similar mechanism to that in Mgp(−/−) mice. |
---|