Cargando…

P38 MAPK Signaling in the Retina: Effects of Aging and Age-Related Macular Degeneration

Age-related macular degeneration (AMD) is the leading cause of irreversible visual impairment worldwide. Age is the greatest risk factor for AMD but the underlying mechanism remains unascertained, resulting in a lack of effective therapies. Growing evidence shows that dysregulation of the p38 MAPK s...

Descripción completa

Detalles Bibliográficos
Autores principales: Muraleva, Natalia A., Kolosova, Nataliya G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380409/
https://www.ncbi.nlm.nih.gov/pubmed/37511345
http://dx.doi.org/10.3390/ijms241411586
Descripción
Sumario:Age-related macular degeneration (AMD) is the leading cause of irreversible visual impairment worldwide. Age is the greatest risk factor for AMD but the underlying mechanism remains unascertained, resulting in a lack of effective therapies. Growing evidence shows that dysregulation of the p38 MAPK signaling pathway (SP) contributes to aging and neurodegenerative diseases; however, information about its alteration in the retina with age and during AMD development is limited. To assess the contribution of alterations in p38 MAPK signaling to AMD, we compared age-associated changes in p38 MAPK SP activity in the retina between Wistar rats (control) and OXYS rats, which develop AMD-like retinopathy spontaneously. We analyzed changes in the mRNA levels of genes of this SP in the retina (data of RNA-seq) and evaluated the phosphorylation/activation of key kinases using Western blotting at different stages of AMD-like pathology including the preclinical stage. p38 MAPK SP activity increased in the retinas of healthy Wistar rats with age. The manifestation and dramatic progression of AMD-like pathology in OXYS rats was accompanied by hyperphosphorylation of p38 MAPK and MK2 as key p38 MAPK SP kinases. Retinopathy progression co-occurred with the enhancement of p38 MAPK-dependent phosphorylation of CryaB at Ser59 in the retina.