Cargando…
Neural Decoding for Intracortical Brain–Computer Interfaces
Brain–computer interfaces have revolutionized the field of neuroscience by providing a solution for paralyzed patients to control external devices and improve the quality of daily life. To accurately and stably control effectors, it is important for decoders to recognize an individual's motor i...
Autores principales: | Dong, Yuanrui, Wang, Shirong, Huang, Qiang, Berg, Rune W., Li, Guanghui, He, Jiping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380541/ https://www.ncbi.nlm.nih.gov/pubmed/37519930 http://dx.doi.org/10.34133/cbsystems.0044 |
Ejemplares similares
-
Reinforcement Learning Based Fast Self-Recalibrating Decoder for Intracortical Brain–Machine Interface
por: Zhang, Peng, et al.
Publicado: (2020) -
The influence of non-stationarity of spike signals on decoding performance in intracortical brain-computer interface: a simulation study
por: Wan, Zijun, et al.
Publicado: (2023) -
Selection of Essential Neural Activity Timesteps for Intracortical Brain–Computer Interface Based on Recurrent Neural Network
por: Yang, Shih-Hung, et al.
Publicado: (2021) -
A simulation study on the effects of neuronal ensemble properties on decoding algorithms for intracortical brain–machine interfaces
por: Kim, Min-Ki, et al.
Publicado: (2018) -
Brain computer interface learning for systems based on electrocorticography and intracortical microelectrode arrays
por: Hiremath, Shivayogi V., et al.
Publicado: (2015)