Cargando…
Formylation as a Chemical Tool to Modulate the Performance of Photosensitizers Based on Boron Dipyrromethene Dimers
Heavy-atom-free photosensitizers are envisioned as the next generation of photoactive molecules for photo-theragnosis. In this approach, and after suitable irradiation, a single molecular scaffold is able to visualize and kill tumour cells by fluorescence signalling and photodynamic therapy (PDT), r...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380594/ https://www.ncbi.nlm.nih.gov/pubmed/37511596 http://dx.doi.org/10.3390/ijms241411837 |
_version_ | 1785080234612097024 |
---|---|
author | Díaz-Norambuena, Carolina Avellanal-Zaballa, Edurne Prieto-Castañeda, Alejandro Bañuelos, Jorge de la Moya, Santiago Agarrabeitia, Antonia R. Ortiz, María J. |
author_facet | Díaz-Norambuena, Carolina Avellanal-Zaballa, Edurne Prieto-Castañeda, Alejandro Bañuelos, Jorge de la Moya, Santiago Agarrabeitia, Antonia R. Ortiz, María J. |
author_sort | Díaz-Norambuena, Carolina |
collection | PubMed |
description | Heavy-atom-free photosensitizers are envisioned as the next generation of photoactive molecules for photo-theragnosis. In this approach, and after suitable irradiation, a single molecular scaffold is able to visualize and kill tumour cells by fluorescence signalling and photodynamic therapy (PDT), respectively, with minimal side effects. In this regard, BODIPY-based orthogonal dimers have irrupted as suitable candidates for this aim. Herein, we analyse the photophysical properties of a set of formyl-functionalized BODIPY dimers to ascertain their suitability as fluorescent photosensitizers. The conducted computationally aided spectroscopic study determined that the fluorescence/singlet oxygen generation dual performance of these valuable BODIPY dimers not only depends on the BODIPY-BODIPY linkage and the steric hindrance around it, but also can be modulated by proper formyl functionalization at specific chromophoric positions. Thus, we propose regioselective formylation as an effective tool to modulate such a delicate photonic balance in BODIPY-based dimeric photosensitizers. The taming of the excited-state dynamics, in particular intramolecular charge transfer as the key underlying process mediating fluorescence deactivation vs. intersystem crossing increasing, could serve to increase fluorescence for brighter bioimaging, enhance the generation of singlet oxygen for killing activity, or balance both for photo-theragnosis. |
format | Online Article Text |
id | pubmed-10380594 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103805942023-07-29 Formylation as a Chemical Tool to Modulate the Performance of Photosensitizers Based on Boron Dipyrromethene Dimers Díaz-Norambuena, Carolina Avellanal-Zaballa, Edurne Prieto-Castañeda, Alejandro Bañuelos, Jorge de la Moya, Santiago Agarrabeitia, Antonia R. Ortiz, María J. Int J Mol Sci Article Heavy-atom-free photosensitizers are envisioned as the next generation of photoactive molecules for photo-theragnosis. In this approach, and after suitable irradiation, a single molecular scaffold is able to visualize and kill tumour cells by fluorescence signalling and photodynamic therapy (PDT), respectively, with minimal side effects. In this regard, BODIPY-based orthogonal dimers have irrupted as suitable candidates for this aim. Herein, we analyse the photophysical properties of a set of formyl-functionalized BODIPY dimers to ascertain their suitability as fluorescent photosensitizers. The conducted computationally aided spectroscopic study determined that the fluorescence/singlet oxygen generation dual performance of these valuable BODIPY dimers not only depends on the BODIPY-BODIPY linkage and the steric hindrance around it, but also can be modulated by proper formyl functionalization at specific chromophoric positions. Thus, we propose regioselective formylation as an effective tool to modulate such a delicate photonic balance in BODIPY-based dimeric photosensitizers. The taming of the excited-state dynamics, in particular intramolecular charge transfer as the key underlying process mediating fluorescence deactivation vs. intersystem crossing increasing, could serve to increase fluorescence for brighter bioimaging, enhance the generation of singlet oxygen for killing activity, or balance both for photo-theragnosis. MDPI 2023-07-23 /pmc/articles/PMC10380594/ /pubmed/37511596 http://dx.doi.org/10.3390/ijms241411837 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Díaz-Norambuena, Carolina Avellanal-Zaballa, Edurne Prieto-Castañeda, Alejandro Bañuelos, Jorge de la Moya, Santiago Agarrabeitia, Antonia R. Ortiz, María J. Formylation as a Chemical Tool to Modulate the Performance of Photosensitizers Based on Boron Dipyrromethene Dimers |
title | Formylation as a Chemical Tool to Modulate the Performance of Photosensitizers Based on Boron Dipyrromethene Dimers |
title_full | Formylation as a Chemical Tool to Modulate the Performance of Photosensitizers Based on Boron Dipyrromethene Dimers |
title_fullStr | Formylation as a Chemical Tool to Modulate the Performance of Photosensitizers Based on Boron Dipyrromethene Dimers |
title_full_unstemmed | Formylation as a Chemical Tool to Modulate the Performance of Photosensitizers Based on Boron Dipyrromethene Dimers |
title_short | Formylation as a Chemical Tool to Modulate the Performance of Photosensitizers Based on Boron Dipyrromethene Dimers |
title_sort | formylation as a chemical tool to modulate the performance of photosensitizers based on boron dipyrromethene dimers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380594/ https://www.ncbi.nlm.nih.gov/pubmed/37511596 http://dx.doi.org/10.3390/ijms241411837 |
work_keys_str_mv | AT diaznorambuenacarolina formylationasachemicaltooltomodulatetheperformanceofphotosensitizersbasedonborondipyrromethenedimers AT avellanalzaballaedurne formylationasachemicaltooltomodulatetheperformanceofphotosensitizersbasedonborondipyrromethenedimers AT prietocastanedaalejandro formylationasachemicaltooltomodulatetheperformanceofphotosensitizersbasedonborondipyrromethenedimers AT banuelosjorge formylationasachemicaltooltomodulatetheperformanceofphotosensitizersbasedonborondipyrromethenedimers AT delamoyasantiago formylationasachemicaltooltomodulatetheperformanceofphotosensitizersbasedonborondipyrromethenedimers AT agarrabeitiaantoniar formylationasachemicaltooltomodulatetheperformanceofphotosensitizersbasedonborondipyrromethenedimers AT ortizmariaj formylationasachemicaltooltomodulatetheperformanceofphotosensitizersbasedonborondipyrromethenedimers |