Cargando…

Tailoring the Morphology of Monodisperse Mesoporous Silica Particles Using Different Alkoxysilanes as Silica Precursors

The hard template method for the preparation of monodisperse mesoporous silica microspheres (MPSMs) has been established in recent years. In this process, in situ-generated silica nanoparticles (SNPs) enter the porous organic template and control the size and pore parameters of the final MPSMs. Here...

Descripción completa

Detalles Bibliográficos
Autores principales: Fait, Fabio, Wagner, Stefanie, Steinbach, Julia C., Kandelbauer, Andreas, Mayer, Hermann A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380632/
https://www.ncbi.nlm.nih.gov/pubmed/37511487
http://dx.doi.org/10.3390/ijms241411729
Descripción
Sumario:The hard template method for the preparation of monodisperse mesoporous silica microspheres (MPSMs) has been established in recent years. In this process, in situ-generated silica nanoparticles (SNPs) enter the porous organic template and control the size and pore parameters of the final MPSMs. Here, the sizes of the deposited SNPs are determined by the hydrolysis and condensation rates of different alkoxysilanes in a base catalyzed sol–gel process. Thus, tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS), tetrapropyl orthosilicate (TPOS) and tetrabutyl orthosilicate (TBOS) were sol–gel processed in the presence of amino-functionalized poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) (p(GMA-co-EDMA)) templates. The size of the final MPSMs covers a broad range of 0.5–7.3 µm and a median pore size distribution from 4.0 to 24.9 nm. Moreover, the specific surface area can be adjusted between 271 and 637 m(2) g(−1). Also, the properties and morphology of the MPSMs differ according to the SNPs. Furthermore, the combination of different alkoxysilanes allows the individual design of the morphology and pore parameters of the silica particles. Selected MPSMs were packed into columns and successfully applied as stationary phases in high-performance liquid chromatography (HPLC) in the separation of various water-soluble vitamins.