Cargando…

Theoretical Analysis of Riboflavin Adsorption on Hexagonal Boron Nitride for Drug Delivery Applications: Unveiling the Influence of Point Defects

This research delves into the intriguing realm of investigating the stability of vitamin B2 (riboflavin, Rf) on hexagonal boron nitride (h-BN), both in its pristine state and in the presence of vacancy defects, with the aim of harnessing their potential as carriers for drug delivery applications. Em...

Descripción completa

Detalles Bibliográficos
Autores principales: Antipina, Liubov Yu., Kotyakova, Kristina Yu., Sorokin, Pavel B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380725/
https://www.ncbi.nlm.nih.gov/pubmed/37511405
http://dx.doi.org/10.3390/ijms241411648
_version_ 1785080266908237824
author Antipina, Liubov Yu.
Kotyakova, Kristina Yu.
Sorokin, Pavel B.
author_facet Antipina, Liubov Yu.
Kotyakova, Kristina Yu.
Sorokin, Pavel B.
author_sort Antipina, Liubov Yu.
collection PubMed
description This research delves into the intriguing realm of investigating the stability of vitamin B2 (riboflavin, Rf) on hexagonal boron nitride (h-BN), both in its pristine state and in the presence of vacancy defects, with the aim of harnessing their potential as carriers for drug delivery applications. Employing the density functional theory (DFT), we perform binding energy calculations and analyze the electronic structure of the BN@Rf system to unravel the nature of their interactions. Our comprehensive DFT calculations unequivocally demonstrate the spontaneous physical sorption of the drug onto the h-BN surface, facilitated by the formation of π-π stacking interactions. The adsorption energy spans a range from −1.15 to −4.00 eV per system, emphasizing the robust nature of the BN@Rf bonding. The results show that the HOMO and LUMO of riboflavin are located exactly in the region of the iso-alloxazine rings of riboflavin. This arrangement fosters the formation of π-π stacking between riboflavin and boron nitride, effectively facilitating the transfer of electron density within the BN@Rf system. Furthermore, our investigations reveal the significant impact of vacancy defects within the boron nitride lattice. These vacancies alter the behavior of the structure, prompting riboflavin to metamorphose from an electron donor to an electron acceptor, expanding our understanding of the interplay between boron nitride defects and riboflavin sorption. Therefore, it is imperative to exert meticulous oversight of the structural integrity of h-BN, given that the existence of vacancies may lead to a noticeable change in its adsorption properties. The obtained data could amplify our capacity to conceive and refine drug delivery h-BN-based systems.
format Online
Article
Text
id pubmed-10380725
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-103807252023-07-29 Theoretical Analysis of Riboflavin Adsorption on Hexagonal Boron Nitride for Drug Delivery Applications: Unveiling the Influence of Point Defects Antipina, Liubov Yu. Kotyakova, Kristina Yu. Sorokin, Pavel B. Int J Mol Sci Article This research delves into the intriguing realm of investigating the stability of vitamin B2 (riboflavin, Rf) on hexagonal boron nitride (h-BN), both in its pristine state and in the presence of vacancy defects, with the aim of harnessing their potential as carriers for drug delivery applications. Employing the density functional theory (DFT), we perform binding energy calculations and analyze the electronic structure of the BN@Rf system to unravel the nature of their interactions. Our comprehensive DFT calculations unequivocally demonstrate the spontaneous physical sorption of the drug onto the h-BN surface, facilitated by the formation of π-π stacking interactions. The adsorption energy spans a range from −1.15 to −4.00 eV per system, emphasizing the robust nature of the BN@Rf bonding. The results show that the HOMO and LUMO of riboflavin are located exactly in the region of the iso-alloxazine rings of riboflavin. This arrangement fosters the formation of π-π stacking between riboflavin and boron nitride, effectively facilitating the transfer of electron density within the BN@Rf system. Furthermore, our investigations reveal the significant impact of vacancy defects within the boron nitride lattice. These vacancies alter the behavior of the structure, prompting riboflavin to metamorphose from an electron donor to an electron acceptor, expanding our understanding of the interplay between boron nitride defects and riboflavin sorption. Therefore, it is imperative to exert meticulous oversight of the structural integrity of h-BN, given that the existence of vacancies may lead to a noticeable change in its adsorption properties. The obtained data could amplify our capacity to conceive and refine drug delivery h-BN-based systems. MDPI 2023-07-19 /pmc/articles/PMC10380725/ /pubmed/37511405 http://dx.doi.org/10.3390/ijms241411648 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Antipina, Liubov Yu.
Kotyakova, Kristina Yu.
Sorokin, Pavel B.
Theoretical Analysis of Riboflavin Adsorption on Hexagonal Boron Nitride for Drug Delivery Applications: Unveiling the Influence of Point Defects
title Theoretical Analysis of Riboflavin Adsorption on Hexagonal Boron Nitride for Drug Delivery Applications: Unveiling the Influence of Point Defects
title_full Theoretical Analysis of Riboflavin Adsorption on Hexagonal Boron Nitride for Drug Delivery Applications: Unveiling the Influence of Point Defects
title_fullStr Theoretical Analysis of Riboflavin Adsorption on Hexagonal Boron Nitride for Drug Delivery Applications: Unveiling the Influence of Point Defects
title_full_unstemmed Theoretical Analysis of Riboflavin Adsorption on Hexagonal Boron Nitride for Drug Delivery Applications: Unveiling the Influence of Point Defects
title_short Theoretical Analysis of Riboflavin Adsorption on Hexagonal Boron Nitride for Drug Delivery Applications: Unveiling the Influence of Point Defects
title_sort theoretical analysis of riboflavin adsorption on hexagonal boron nitride for drug delivery applications: unveiling the influence of point defects
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380725/
https://www.ncbi.nlm.nih.gov/pubmed/37511405
http://dx.doi.org/10.3390/ijms241411648
work_keys_str_mv AT antipinaliubovyu theoreticalanalysisofriboflavinadsorptiononhexagonalboronnitridefordrugdeliveryapplicationsunveilingtheinfluenceofpointdefects
AT kotyakovakristinayu theoreticalanalysisofriboflavinadsorptiononhexagonalboronnitridefordrugdeliveryapplicationsunveilingtheinfluenceofpointdefects
AT sorokinpavelb theoreticalanalysisofriboflavinadsorptiononhexagonalboronnitridefordrugdeliveryapplicationsunveilingtheinfluenceofpointdefects