Cargando…

Optimization of Dieldrin Selection for the Genetic Sexing of Aedes albopictus

SIMPLE SUMMARY: The development of sterile-male programs for the control of mosquito populations faces a number of challenges including sex separation. Genetic sexing strategies offer the advantage of limiting costs and space by removing females at the larval stage. We recently developed a genetic s...

Descripción completa

Detalles Bibliográficos
Autores principales: Scussel, Sarah, Gaudillat, Benjamin, Esnault, Jérémy, Lejarre, Quentin, Duployer, Marianne, Messaoudi, Daouia, Mavingui, Patrick, Tortosa, Pablo, Cattel, Julien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10380853/
https://www.ncbi.nlm.nih.gov/pubmed/37504636
http://dx.doi.org/10.3390/insects14070630
Descripción
Sumario:SIMPLE SUMMARY: The development of sterile-male programs for the control of mosquito populations faces a number of challenges including sex separation. Genetic sexing strategies offer the advantage of limiting costs and space by removing females at the larval stage. We recently developed a genetic sexing strain in Aedes albopictus conferring dieldrin resistance in males only. We performed several experiments in order to reduce the quantity of dieldrin used while maintaining a high level of female elimination and recovery of nearly all resistant males. Interestingly, we showed that the use of this reduced dieldrin exposure led to a dieldrin detection in adult males that was below the sensitivity threshold of the Gas Chromatography-Mass Spectrometry detection method. The utilization of this genetic sexing strain in mosquito control programs implemented at industrial scales is discussed. ABSTRACT: The mass production of mosquitoes at an industrial scale requires efficient sex separation, which can be achieved through mechanical, genetic or artificial intelligence means. Compared with other methods, the genetic sexing approach offers the advantage of limiting costs and space by removing females at the larval stage. We recently developed a Genetic Sexing Strain (GSS) in Aedes albopictus based on the sex linkage of the rdl(R) allele, conferring resistance to dieldrin, to the male (M) locus. It has been previously reported that dieldrin ingested by larvae can be detected in adults and bioaccumulated in predators, raising the question of its use at a large scale. In this context, we performed several experiments aiming at optimizing dieldrin selection by decreasing both dieldrin concentration and exposure time while maintaining a stable percentage of contaminating females averaging 1%. We showed that the previously used dieldrin exposure induced an important toxicity as it killed 60% of resistant males at the larval stage. We lowered this toxicity by reducing the dose and/or the exposure time to recover nearly all resistant males. We then quantified the residues of dieldrin in resistant male adults and showed that dieldrin toxicity in larvae was positively correlated with dieldrin concentrations detected in adults. Interestingly, we showed that the use of reduced dieldrin exposure led to a dieldrin quantification in adult males that was below the quantity threshold of the Gas Chromatography-Mass Spectrometry detection method. Presented data show that dieldrin exposure can be adjusted to suppress toxicity in males while achieving efficient sexing and lowering the levels of dieldrin residues in adults to barely quantifiable levels.