Cargando…
Contributing Role of High Mobility Group Box 1 Signaling in Oral Cancer Development and Therapy
Oral squamous cell carcinoma (OSCC) is the most frequent type of oral cancer of multifactorial origin, characterized by histological and clinical manifestations. To date, there are no specific biomarkers or treatment modalities available to efficiently manage this neoplasia, demanding further resear...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381251/ https://www.ncbi.nlm.nih.gov/pubmed/37511951 http://dx.doi.org/10.3390/life13071577 |
Sumario: | Oral squamous cell carcinoma (OSCC) is the most frequent type of oral cancer of multifactorial origin, characterized by histological and clinical manifestations. To date, there are no specific biomarkers or treatment modalities available to efficiently manage this neoplasia, demanding further research on the molecular background of OSCC pathology. Elucidation of signal transduction pathways and associated molecules with differential expression and function in OSCC are expected to enhance the future development of molecular targeted therapies. Among signaling proteins with a potential functional role in OSCC, the High Mobility Group Box 1 (HMGB1) protein has stimulated scientific interest due to frequent upregulation, and implication in the progression of many types of head and neck cancer types. HMGB1 is a nuclear nonhistone protein and an extracellularly secreted cytokine that can interact with several signaling molecules implicated in the pathogenic pathways of OSCC. Binding of HMGB1 to specific receptors on OSCC cells such as the receptor of AGE (RAGE) and the toll-like receptor (TLR) has been shown to initiate several intercellular signaling cascades that can promote OSCC growth, invasion, and metastasis, indicating a potential target for patient prognosis and therapeutic approaches. The purpose of this review is to explore the functional role and associated signaling of HMGB1 in OSCC in order to reveal potential therapeutic targeting options. |
---|