Cargando…
Human Activity Recognition Using Cascaded Dual Attention CNN and Bi-Directional GRU Framework
Vision-based human activity recognition (HAR) has emerged as one of the essential research areas in video analytics. Over the last decade, numerous advanced deep learning algorithms have been introduced to recognize complex human actions from video streams. These deep learning algorithms have shown...
Autores principales: | Ullah, Hayat, Munir, Arslan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381293/ https://www.ncbi.nlm.nih.gov/pubmed/37504807 http://dx.doi.org/10.3390/jimaging9070130 |
Ejemplares similares
-
A deep learning framework using CNN and stacked Bi-GRU for COVID-19 predictions in India
por: Ahuja, Sahil, et al.
Publicado: (2021) -
A 3DCNN-Based Knowledge Distillation Framework for Human Activity Recognition
por: Ullah, Hayat, et al.
Publicado: (2023) -
Interpretation of Electrocardiogram Heartbeat by CNN and GRU
por: Yao, Guoliang, et al.
Publicado: (2021) -
CircPCBL: Identification of Plant CircRNAs with a CNN-BiGRU-GLT Model
por: Wu, Pengpeng, et al.
Publicado: (2023) -
Prediction of tide level based on variable weight combination of LightGBM and CNN-BiGRU model
por: Su, Ye, et al.
Publicado: (2023)