Cargando…

Conidia Fusion: A Mechanism for Fungal Adaptation to Nutrient-Poor Habitats

Conidia fusion (CF) is a commonly observed structure in fungi. However, it has not been systematically studied. This study examined 2457 strains of nematode-trapping fungi (NTF) to explore the species specificity, physiological period, and physiological significance of CF. The results demonstrated t...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xinju, Zhang, Fa, Yang, Yaoquan, Zhou, Faping, Boonmee, Saranyaphat, Xiao, Wen, Yang, Xiaoyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381365/
https://www.ncbi.nlm.nih.gov/pubmed/37504743
http://dx.doi.org/10.3390/jof9070755
Descripción
Sumario:Conidia fusion (CF) is a commonly observed structure in fungi. However, it has not been systematically studied. This study examined 2457 strains of nematode-trapping fungi (NTF) to explore the species specificity, physiological period, and physiological significance of CF. The results demonstrated that only six species of Arthrobotrys can form CF among the sixty-five tested NTF species. The studies on the model species Arthrobotrys oligospora (DL228) showed that CF occurred in both shed and unshed plus mature and immature conidia. Additionally, the conidia fusion rate (CFR) increased significantly with the decrease of nutrient concentration in habitats. The studies on the conidia fusion body (CFB) produced by A. oligospora (DL228) revealed that the more conidia contained in the CFB, the faster and denser the mycelia of the CFB germinated in weak nutrient medium and soil plates. On the one hand, rapid mycelial extension is beneficial for the CFB to quickly find new nutrient sources in habitats with uneven nutrient distribution. On the other hand, dense mycelium increases the contact area with the environment, improving the nutrient absorption efficiency, which is conducive to improving the survival rate of conidia in the weak nutrient environment. In addition, all species that form CF produce smaller conidia. Based on this observation, CF may be a strategy to balance the defects (nutrient deficiency) caused by conidia miniaturization.