Cargando…

Rapid-Hardening and High-Strength Steel-Fiber-Reinforced Concrete: Effects of Curing Ages and Strain Rates on Compressive Performance

High-strength steel-fiber-reinforced concrete (HSFRC) has become increasingly popular as a cast-in-place jointing material in precast concrete bridges and buildings due to its excellent tensile strength and crack resistance. However, working conditions such as emergency repairs and low-temperature c...

Descripción completa

Detalles Bibliográficos
Autores principales: Mo, Fan, Li, Boxiang, Li, Mingyi, Fang, Zhuangcheng, Fang, Shu, Jiang, Haibo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381371/
https://www.ncbi.nlm.nih.gov/pubmed/37512222
http://dx.doi.org/10.3390/ma16144947
Descripción
Sumario:High-strength steel-fiber-reinforced concrete (HSFRC) has become increasingly popular as a cast-in-place jointing material in precast concrete bridges and buildings due to its excellent tensile strength and crack resistance. However, working conditions such as emergency repairs and low-temperature constructions require higher demands on the workability and mechanical properties of HSFRC. To this end, a novel rapid-hardening HSFRC has been proposed, which is produced using sulphoaluminate cement (SC) instead of ordinary Portland cement. In this study, quasi-static and dynamic tests were carried out to compare the compressive behavior of conventional and rapid-hardening HSFRCs. The key test variables included SC replacement ratios, concrete curing ages, and strain rates. Test results showed: (1) Rapid-hardening HSFRC exhibited high early strengths of up to 33.14 and 44.9 MPa at the curing age of 4 h, respectively, but its compressive strength and elastic modulus were generally inferior to those of conventional HSFRC. (2) The strain rate sensitivity of rapid-hardening HSFRC was more significant compared to its conventional counterpart and increased with increasing curing ages and strain rates. This study highlights the great potential of rapid-hardening HSFRC in rapid bridge construction.