Cargando…
Fast Reservoir Characterization with AI-Based Lithology Prediction Using Drill Cuttings Images and Noisy Labels
In this paper, we considered one of the problems that arise during drilling automation, namely the automation of lithology identification from drill cuttings images. Usually, this work is performed by experienced geologists, but this is a tedious and subjective process. Drill cuttings are the cheape...
Autores principales: | Tolstaya, Ekaterina, Shakirov, Anuar, Mezghani, Mokhles, Safonov, Sergey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381372/ https://www.ncbi.nlm.nih.gov/pubmed/37504803 http://dx.doi.org/10.3390/jimaging9070126 |
Ejemplares similares
-
Deep learning based lithology classification of drill core images
por: Fu, Dong, et al.
Publicado: (2022) -
Water-flooding characteristics of lithologic reservoir in Ordos basin
por: He, Jie, et al.
Publicado: (2021) -
Intelligent Prediction for Rock Porosity While Drilling Complex Lithology in Real Time
por: Gamal, Hany, et al.
Publicado: (2021) -
Author Correction: Water-flooding characteristics of lithologic reservoir in Ordos basin
por: He, Jie, et al.
Publicado: (2021) -
Applications of
Different Classification Machine Learning
Techniques to Predict Formation Tops and Lithology While Drilling
por: Ibrahim, Ahmed Farid, et al.
Publicado: (2023)