Cargando…

Marine Microbial Polysaccharides: An Untapped Resource for Biotechnological Applications

As the largest habitat on Earth, the marine environment harbors various microorganisms of biotechnological potential. Indeed, microbial compounds, especially polysaccharides from marine species, have been attracting much attention for their applications within the medical, pharmaceutical, food, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeewon, Rajesh, Aullybux, Aadil Ahmad, Puchooa, Daneshwar, Nazurally, Nadeem, Alrefaei, Abdulwahed Fahad, Zhang, Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381399/
https://www.ncbi.nlm.nih.gov/pubmed/37504951
http://dx.doi.org/10.3390/md21070420
Descripción
Sumario:As the largest habitat on Earth, the marine environment harbors various microorganisms of biotechnological potential. Indeed, microbial compounds, especially polysaccharides from marine species, have been attracting much attention for their applications within the medical, pharmaceutical, food, and other industries, with such interest largely stemming from the extensive structural and functional diversity displayed by these natural polymers. At the same time, the extreme conditions within the aquatic ecosystem (e.g., temperature, pH, salinity) may not only induce microorganisms to develop a unique metabolism but may also increase the likelihood of isolating novel polysaccharides with previously unreported characteristics. However, despite their potential, only a few microbial polysaccharides have actually reached the market, with even fewer being of marine origin. Through a synthesis of relevant literature, this review seeks to provide an overview of marine microbial polysaccharides, including their unique characteristics. In particular, their suitability for specific biotechnological applications and recent progress made will be highlighted before discussing the challenges that currently limit their study as well as their potential for wider applications. It is expected that this review will help to guide future research in the field of microbial polysaccharides, especially those of marine origin.