Cargando…
Production of L-Malic Acid by Metabolically Engineered Aspergillus nidulans Based on Efficient CRISPR–Cas9 and Cre-loxP Systems
Aspergillus nidulans has been more extensively characterized than other Aspergillus species considering its morphology, physiology, metabolic pathways, and genetic regulation. As it has a rapid growth rate accompanied by simple nutritional requirements and a high tolerance to extreme cultural condit...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381526/ https://www.ncbi.nlm.nih.gov/pubmed/37504708 http://dx.doi.org/10.3390/jof9070719 |
Sumario: | Aspergillus nidulans has been more extensively characterized than other Aspergillus species considering its morphology, physiology, metabolic pathways, and genetic regulation. As it has a rapid growth rate accompanied by simple nutritional requirements and a high tolerance to extreme cultural conditions, A. nidulans is a promising microbial cell factory to biosynthesize various products in industry. However, it remains unclear for whether it is also a suitable host for synthesizing abundant L-malic acid. In this study, we developed a convenient and efficient double-gene-editing system in A. nidulans strain TN02A7 based on the CRISPR–Cas9 and Cre-loxP systems. Using this gene-editing system, we made a L-malic acid-producing strain, ZQ07, derived from TN02A7, by deleting or overexpressing five genes (encoding Pyc, pyruvate carboxylase; OahA, oxaloacetate acetylhydrolase; MdhC, malate dehydrogenase; DctA, C4-dicarboxylic acid transporter; and CexA, citric acid transporter). The L-malic acid yield in ZQ07 increased to approximately 9.6 times higher (up to 30.7 g/L titer) than that of the original unedited strain TN02A7, in which the production of L-malic acid was originally very low. The findings in this study not only demonstrate that A. nidulans could be used as a potential host for biosynthesizing organic acids, but also provide a highly efficient gene-editing strategy in filamentous fungi. |
---|