Cargando…
Conv-ViT: A Convolution and Vision Transformer-Based Hybrid Feature Extraction Method for Retinal Disease Detection
The current advancement towards retinal disease detection mainly focused on distinct feature extraction using either a convolutional neural network (CNN) or a transformer-based end-to-end deep learning (DL) model. The individual end-to-end DL models are capable of only processing texture or shape-ba...
Autores principales: | Dutta, Pramit, Sathi, Khaleda Akther, Hossain, Md. Azad, Dewan, M. Ali Akber |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381782/ https://www.ncbi.nlm.nih.gov/pubmed/37504817 http://dx.doi.org/10.3390/jimaging9070140 |
Ejemplares similares
-
Gait-ViT: Gait Recognition with Vision Transformer
por: Mogan, Jashila Nair, et al.
Publicado: (2022) -
Plant-CNN-ViT: Plant Classification with Ensemble of Convolutional Neural Networks and Vision Transformer
por: Lee, Chin Poo, et al.
Publicado: (2023) -
HGR-ViT: Hand Gesture Recognition with Vision Transformer
por: Tan, Chun Keat, et al.
Publicado: (2023) -
The classification of the bladder cancer based on Vision Transformers (ViT)
por: Khedr, Ola S., et al.
Publicado: (2023) -
Gait-CNN-ViT: Multi-Model Gait Recognition with Convolutional Neural Networks and Vision Transformer
por: Mogan, Jashila Nair, et al.
Publicado: (2023)