Cargando…

Peptidomics Analysis Reveals the Buccal Gland of Jawless Vertebrate Lamprey as a Source of Multiple Bioactive Peptides

Various proteins with antibacterial, anticoagulant, and anti-inflammatory properties have been identified in the buccal glands of jawless blood-sucking vertebrate lampreys. However, studies on endogenous peptides in the buccal gland of lampreys are limited. In this study, 4528 endogenous peptides we...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yaocen, Sun, Feng, Wang, Zhuoying, Duan, Xuyuan, Li, Qingwei, Pang, Yue, Gou, Meng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10381800/
https://www.ncbi.nlm.nih.gov/pubmed/37504920
http://dx.doi.org/10.3390/md21070389
Descripción
Sumario:Various proteins with antibacterial, anticoagulant, and anti-inflammatory properties have been identified in the buccal glands of jawless blood-sucking vertebrate lampreys. However, studies on endogenous peptides in the buccal gland of lampreys are limited. In this study, 4528 endogenous peptides were identified from 1224 precursor proteins using peptidomics and screened for bioactivity in the buccal glands of the lamprey, Lethenteron camtschaticum. We synthesized four candidate bioactive peptides (VSLNLPYSVVRGEQFVVQA, DIPVPEVPILE, VVQLPPVVLGTFG, and VPPPPLVLPPASVK), calculated their secondary structures, and validated their bioactivity. The results showed that the peptide VSLNLPYSVVRGEQFVVQA possessed anti-inflammatory activity, which significantly increased the expression of anti-inflammatory factors and decreased the expression of inflammatory factors in THP-1 cells. The peptide VVQLPPVVLGTFG showed antibacterial activity against some gram-positive bacteria. The peptide VSLNLPYSVVRGEQFVQA possessed good ACE inhibitory activity at low concentrations, but no dose-related correlation was observed. Our study revealed that the buccal glands of the jawless vertebrate lamprey are a source of multiple bioactive peptides, which will provide new insights into the blood-sucking mechanism of lamprey.