Cargando…
A chemotherapy response prediction model derived from tumor-promoting B and Tregs and proinflammatory macrophages in HGSOC
BACKGROUND: Most patients with high-grade serous ovarian cancer (HGSOC) experienced disease recurrence with cumulative chemoresistance, leading to treatment failure. However, few biomarkers are currently available in clinical practice that can accurately predict chemotherapy response. The tumor immu...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382026/ https://www.ncbi.nlm.nih.gov/pubmed/37519793 http://dx.doi.org/10.3389/fonc.2023.1171582 |
_version_ | 1785080590248181760 |
---|---|
author | Xi, Yue Zhang, Yingchun Zheng, Kun Zou, Jiawei Gui, Lv Zou, Xin Chen, Liang Hao, Jie Zhang, Yiming |
author_facet | Xi, Yue Zhang, Yingchun Zheng, Kun Zou, Jiawei Gui, Lv Zou, Xin Chen, Liang Hao, Jie Zhang, Yiming |
author_sort | Xi, Yue |
collection | PubMed |
description | BACKGROUND: Most patients with high-grade serous ovarian cancer (HGSOC) experienced disease recurrence with cumulative chemoresistance, leading to treatment failure. However, few biomarkers are currently available in clinical practice that can accurately predict chemotherapy response. The tumor immune microenvironment is critical for cancer development, and its transcriptomic profile may be associated with treatment response and differential outcomes. The aim of this study was to develop a new predictive signature for chemotherapy in patients with HGSOC. METHODS: Two HGSOC single-cell RNA sequencing datasets from patients receiving chemotherapy were reinvestigated. The subtypes of endoplasmic reticulum stress-related XBP1(+) B cells, invasive metastasis-related ACTB(+) Tregs, and proinflammatory-related macrophage subtypes with good predictive power and associated with chemotherapy response were identified. These results were verified in an independent HGSOC bulk RNA-seq dataset for chemotherapy. Further validation in clinical cohorts used quantitative real-time PCR (qRT-PCR). RESULTS: By combining cluster-specific genes for the aforementioned cell subtypes, we constructed a chemotherapy response prediction model containing 43 signature genes that achieved an area under the receiver operator curve (AUC) of 0.97 (p = 2.1e-07) for the GSE156699 cohort (88 samples). A huge improvement was achieved compared to existing prediction models with a maximum AUC of 0.74. In addition, its predictive capability was validated in multiple independent bulk RNA-seq datasets. The qRT-PCR results demonstrate that the expression of the six genes has the highest diagnostic value, consistent with the trend observed in the analysis of public data. CONCLUSIONS: The developed chemotherapy response prediction model can be used as a valuable clinical decision tool to guide chemotherapy in HGSOC patients. |
format | Online Article Text |
id | pubmed-10382026 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-103820262023-07-29 A chemotherapy response prediction model derived from tumor-promoting B and Tregs and proinflammatory macrophages in HGSOC Xi, Yue Zhang, Yingchun Zheng, Kun Zou, Jiawei Gui, Lv Zou, Xin Chen, Liang Hao, Jie Zhang, Yiming Front Oncol Oncology BACKGROUND: Most patients with high-grade serous ovarian cancer (HGSOC) experienced disease recurrence with cumulative chemoresistance, leading to treatment failure. However, few biomarkers are currently available in clinical practice that can accurately predict chemotherapy response. The tumor immune microenvironment is critical for cancer development, and its transcriptomic profile may be associated with treatment response and differential outcomes. The aim of this study was to develop a new predictive signature for chemotherapy in patients with HGSOC. METHODS: Two HGSOC single-cell RNA sequencing datasets from patients receiving chemotherapy were reinvestigated. The subtypes of endoplasmic reticulum stress-related XBP1(+) B cells, invasive metastasis-related ACTB(+) Tregs, and proinflammatory-related macrophage subtypes with good predictive power and associated with chemotherapy response were identified. These results were verified in an independent HGSOC bulk RNA-seq dataset for chemotherapy. Further validation in clinical cohorts used quantitative real-time PCR (qRT-PCR). RESULTS: By combining cluster-specific genes for the aforementioned cell subtypes, we constructed a chemotherapy response prediction model containing 43 signature genes that achieved an area under the receiver operator curve (AUC) of 0.97 (p = 2.1e-07) for the GSE156699 cohort (88 samples). A huge improvement was achieved compared to existing prediction models with a maximum AUC of 0.74. In addition, its predictive capability was validated in multiple independent bulk RNA-seq datasets. The qRT-PCR results demonstrate that the expression of the six genes has the highest diagnostic value, consistent with the trend observed in the analysis of public data. CONCLUSIONS: The developed chemotherapy response prediction model can be used as a valuable clinical decision tool to guide chemotherapy in HGSOC patients. Frontiers Media S.A. 2023-07-14 /pmc/articles/PMC10382026/ /pubmed/37519793 http://dx.doi.org/10.3389/fonc.2023.1171582 Text en Copyright © 2023 Xi, Zhang, Zheng, Zou, Gui, Zou, Chen, Hao and Zhang https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Xi, Yue Zhang, Yingchun Zheng, Kun Zou, Jiawei Gui, Lv Zou, Xin Chen, Liang Hao, Jie Zhang, Yiming A chemotherapy response prediction model derived from tumor-promoting B and Tregs and proinflammatory macrophages in HGSOC |
title | A chemotherapy response prediction model derived from tumor-promoting B and Tregs and proinflammatory macrophages in HGSOC |
title_full | A chemotherapy response prediction model derived from tumor-promoting B and Tregs and proinflammatory macrophages in HGSOC |
title_fullStr | A chemotherapy response prediction model derived from tumor-promoting B and Tregs and proinflammatory macrophages in HGSOC |
title_full_unstemmed | A chemotherapy response prediction model derived from tumor-promoting B and Tregs and proinflammatory macrophages in HGSOC |
title_short | A chemotherapy response prediction model derived from tumor-promoting B and Tregs and proinflammatory macrophages in HGSOC |
title_sort | chemotherapy response prediction model derived from tumor-promoting b and tregs and proinflammatory macrophages in hgsoc |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382026/ https://www.ncbi.nlm.nih.gov/pubmed/37519793 http://dx.doi.org/10.3389/fonc.2023.1171582 |
work_keys_str_mv | AT xiyue achemotherapyresponsepredictionmodelderivedfromtumorpromotingbandtregsandproinflammatorymacrophagesinhgsoc AT zhangyingchun achemotherapyresponsepredictionmodelderivedfromtumorpromotingbandtregsandproinflammatorymacrophagesinhgsoc AT zhengkun achemotherapyresponsepredictionmodelderivedfromtumorpromotingbandtregsandproinflammatorymacrophagesinhgsoc AT zoujiawei achemotherapyresponsepredictionmodelderivedfromtumorpromotingbandtregsandproinflammatorymacrophagesinhgsoc AT guilv achemotherapyresponsepredictionmodelderivedfromtumorpromotingbandtregsandproinflammatorymacrophagesinhgsoc AT zouxin achemotherapyresponsepredictionmodelderivedfromtumorpromotingbandtregsandproinflammatorymacrophagesinhgsoc AT chenliang achemotherapyresponsepredictionmodelderivedfromtumorpromotingbandtregsandproinflammatorymacrophagesinhgsoc AT haojie achemotherapyresponsepredictionmodelderivedfromtumorpromotingbandtregsandproinflammatorymacrophagesinhgsoc AT zhangyiming achemotherapyresponsepredictionmodelderivedfromtumorpromotingbandtregsandproinflammatorymacrophagesinhgsoc AT xiyue chemotherapyresponsepredictionmodelderivedfromtumorpromotingbandtregsandproinflammatorymacrophagesinhgsoc AT zhangyingchun chemotherapyresponsepredictionmodelderivedfromtumorpromotingbandtregsandproinflammatorymacrophagesinhgsoc AT zhengkun chemotherapyresponsepredictionmodelderivedfromtumorpromotingbandtregsandproinflammatorymacrophagesinhgsoc AT zoujiawei chemotherapyresponsepredictionmodelderivedfromtumorpromotingbandtregsandproinflammatorymacrophagesinhgsoc AT guilv chemotherapyresponsepredictionmodelderivedfromtumorpromotingbandtregsandproinflammatorymacrophagesinhgsoc AT zouxin chemotherapyresponsepredictionmodelderivedfromtumorpromotingbandtregsandproinflammatorymacrophagesinhgsoc AT chenliang chemotherapyresponsepredictionmodelderivedfromtumorpromotingbandtregsandproinflammatorymacrophagesinhgsoc AT haojie chemotherapyresponsepredictionmodelderivedfromtumorpromotingbandtregsandproinflammatorymacrophagesinhgsoc AT zhangyiming chemotherapyresponsepredictionmodelderivedfromtumorpromotingbandtregsandproinflammatorymacrophagesinhgsoc |