Cargando…
Biological soil crusts on agricultural soils of mesic regions promote microbial cross-kingdom co-occurrences and nutrient retention
INTRODUCTION: Biological soil crusts (biocrusts) are known as biological hotspots on undisturbed, nutrient-poor bare soil surfaces and until now, are mostly observed in (semi-) arid regions but are currently poorly understood in agricultural systems. This is a crucial knowledge gap because managed s...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382179/ https://www.ncbi.nlm.nih.gov/pubmed/37520365 http://dx.doi.org/10.3389/fmicb.2023.1169958 |
_version_ | 1785080628374405120 |
---|---|
author | Kurth, Julia Katharina Albrecht, Martin Glaser, Karin Karsten, Ulf Vestergaard, Gisle Armbruster, Martin Kublik, Susanne Schmid, Christoph A. O. Schloter, Michael Schulz, Stefanie |
author_facet | Kurth, Julia Katharina Albrecht, Martin Glaser, Karin Karsten, Ulf Vestergaard, Gisle Armbruster, Martin Kublik, Susanne Schmid, Christoph A. O. Schloter, Michael Schulz, Stefanie |
author_sort | Kurth, Julia Katharina |
collection | PubMed |
description | INTRODUCTION: Biological soil crusts (biocrusts) are known as biological hotspots on undisturbed, nutrient-poor bare soil surfaces and until now, are mostly observed in (semi-) arid regions but are currently poorly understood in agricultural systems. This is a crucial knowledge gap because managed sites of mesic regions can quickly cover large areas. Thus, we addressed the questions (i) if biocrusts from agricultural sites of mesic regions also increase nutrients and microbial biomass as their (semi-) arid counterparts, and (ii) how microbial community assemblage in those biocrusts is influenced by disturbances like different fertilization and tillage regimes. METHODS: We compared phototrophic biomass, nutrient concentrations as well as the abundance, diversity and co-occurrence of Archaea, Bacteria, and Fungi in biocrusts and bare soils at a site with low agricultural soil quality. RESULTS AND DISCUSSION: Biocrusts built up significant quantities of phototrophic and microbial biomass and stored more nutrients compared to bare soils independent of the fertilizer applied and the tillage management. Surprisingly, particularly low abundant Actinobacteria were highly connected in the networks of biocrusts. In contrast, Cyanobacteria were rarely connected, which indicates reduced importance within the microbial community of the biocrusts. However, in bare soil networks, Cyanobacteria were the most connected bacterial group and, hence, might play a role in early biocrust formation due to their ability to, e.g., fix nitrogen and thus induce hotspot-like properties. The microbial community composition differed and network complexity was reduced by conventional tillage. Mineral and organic fertilizers led to networks that are more complex with a higher percentage of positive correlations favoring microbe-microbe interactions. Our study demonstrates that biocrusts represent a microbial hotspot on soil surfaces under agricultural use, which may have important implications for sustainable management of such soils in the future. |
format | Online Article Text |
id | pubmed-10382179 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-103821792023-07-29 Biological soil crusts on agricultural soils of mesic regions promote microbial cross-kingdom co-occurrences and nutrient retention Kurth, Julia Katharina Albrecht, Martin Glaser, Karin Karsten, Ulf Vestergaard, Gisle Armbruster, Martin Kublik, Susanne Schmid, Christoph A. O. Schloter, Michael Schulz, Stefanie Front Microbiol Microbiology INTRODUCTION: Biological soil crusts (biocrusts) are known as biological hotspots on undisturbed, nutrient-poor bare soil surfaces and until now, are mostly observed in (semi-) arid regions but are currently poorly understood in agricultural systems. This is a crucial knowledge gap because managed sites of mesic regions can quickly cover large areas. Thus, we addressed the questions (i) if biocrusts from agricultural sites of mesic regions also increase nutrients and microbial biomass as their (semi-) arid counterparts, and (ii) how microbial community assemblage in those biocrusts is influenced by disturbances like different fertilization and tillage regimes. METHODS: We compared phototrophic biomass, nutrient concentrations as well as the abundance, diversity and co-occurrence of Archaea, Bacteria, and Fungi in biocrusts and bare soils at a site with low agricultural soil quality. RESULTS AND DISCUSSION: Biocrusts built up significant quantities of phototrophic and microbial biomass and stored more nutrients compared to bare soils independent of the fertilizer applied and the tillage management. Surprisingly, particularly low abundant Actinobacteria were highly connected in the networks of biocrusts. In contrast, Cyanobacteria were rarely connected, which indicates reduced importance within the microbial community of the biocrusts. However, in bare soil networks, Cyanobacteria were the most connected bacterial group and, hence, might play a role in early biocrust formation due to their ability to, e.g., fix nitrogen and thus induce hotspot-like properties. The microbial community composition differed and network complexity was reduced by conventional tillage. Mineral and organic fertilizers led to networks that are more complex with a higher percentage of positive correlations favoring microbe-microbe interactions. Our study demonstrates that biocrusts represent a microbial hotspot on soil surfaces under agricultural use, which may have important implications for sustainable management of such soils in the future. Frontiers Media S.A. 2023-07-14 /pmc/articles/PMC10382179/ /pubmed/37520365 http://dx.doi.org/10.3389/fmicb.2023.1169958 Text en Copyright © 2023 Kurth, Albrecht, Glaser, Karsten, Vestergaard, Armbruster, Kublik, Schmid, Schloter and Schulz. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Kurth, Julia Katharina Albrecht, Martin Glaser, Karin Karsten, Ulf Vestergaard, Gisle Armbruster, Martin Kublik, Susanne Schmid, Christoph A. O. Schloter, Michael Schulz, Stefanie Biological soil crusts on agricultural soils of mesic regions promote microbial cross-kingdom co-occurrences and nutrient retention |
title | Biological soil crusts on agricultural soils of mesic regions promote microbial cross-kingdom co-occurrences and nutrient retention |
title_full | Biological soil crusts on agricultural soils of mesic regions promote microbial cross-kingdom co-occurrences and nutrient retention |
title_fullStr | Biological soil crusts on agricultural soils of mesic regions promote microbial cross-kingdom co-occurrences and nutrient retention |
title_full_unstemmed | Biological soil crusts on agricultural soils of mesic regions promote microbial cross-kingdom co-occurrences and nutrient retention |
title_short | Biological soil crusts on agricultural soils of mesic regions promote microbial cross-kingdom co-occurrences and nutrient retention |
title_sort | biological soil crusts on agricultural soils of mesic regions promote microbial cross-kingdom co-occurrences and nutrient retention |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382179/ https://www.ncbi.nlm.nih.gov/pubmed/37520365 http://dx.doi.org/10.3389/fmicb.2023.1169958 |
work_keys_str_mv | AT kurthjuliakatharina biologicalsoilcrustsonagriculturalsoilsofmesicregionspromotemicrobialcrosskingdomcooccurrencesandnutrientretention AT albrechtmartin biologicalsoilcrustsonagriculturalsoilsofmesicregionspromotemicrobialcrosskingdomcooccurrencesandnutrientretention AT glaserkarin biologicalsoilcrustsonagriculturalsoilsofmesicregionspromotemicrobialcrosskingdomcooccurrencesandnutrientretention AT karstenulf biologicalsoilcrustsonagriculturalsoilsofmesicregionspromotemicrobialcrosskingdomcooccurrencesandnutrientretention AT vestergaardgisle biologicalsoilcrustsonagriculturalsoilsofmesicregionspromotemicrobialcrosskingdomcooccurrencesandnutrientretention AT armbrustermartin biologicalsoilcrustsonagriculturalsoilsofmesicregionspromotemicrobialcrosskingdomcooccurrencesandnutrientretention AT kubliksusanne biologicalsoilcrustsonagriculturalsoilsofmesicregionspromotemicrobialcrosskingdomcooccurrencesandnutrientretention AT schmidchristophao biologicalsoilcrustsonagriculturalsoilsofmesicregionspromotemicrobialcrosskingdomcooccurrencesandnutrientretention AT schlotermichael biologicalsoilcrustsonagriculturalsoilsofmesicregionspromotemicrobialcrosskingdomcooccurrencesandnutrientretention AT schulzstefanie biologicalsoilcrustsonagriculturalsoilsofmesicregionspromotemicrobialcrosskingdomcooccurrencesandnutrientretention |