Cargando…
Improving single-hand open/close motor imagery classification by error-related potentials correction
OBJECTIVE: The ability of a brain-computer interface (BCI) to classify brain activity in electroencephalograms (EEG) during motor imagery (MI) tasks is an important performance indicator. Because the cortical regions that drive the single-handed open and closed tasks overlap, it is difficult to clas...
Autores principales: | Lei, Yanghao, Wang, Dong, Wang, Weizhen, Qu, Hao, Wang, Jing, Shi, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382287/ https://www.ncbi.nlm.nih.gov/pubmed/37520987 http://dx.doi.org/10.1016/j.heliyon.2023.e18452 |
Ejemplares similares
-
Enhanced lower-limb motor imagery by kinesthetic illusion
por: Wang, Weizhen, et al.
Publicado: (2023) -
Classification of Four-Class Motor Imagery Employing Single-Channel Electroencephalography
por: Ge, Sheng, et al.
Publicado: (2014) -
Intelligent Classification Technique of Hand Motor Imagery Using EEG Beta Rebound Follow-Up Pattern
por: Wang, Jiachen, et al.
Publicado: (2022) -
Classification Scheme for Arm Motor Imagery
por: Tavakolan, Mojgan, et al.
Publicado: (2016) -
Closed-loop motor imagery EEG simulation for brain-computer interfaces
por: Shin, Hyonyoung, et al.
Publicado: (2022)