Cargando…
Microbial mechanisms to transform the super-trace element tellurium: a systematic review and discussion of nanoparticulate phases
Tellurium is a super-trace metalloid on Earth. Owing to its excellent physical and chemical properties, it is used in industries such as metallurgy and manufacturing, particularly of semiconductors and – more recently – solar panels. As the global demand for tellurium rises, environmental issues sur...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382350/ https://www.ncbi.nlm.nih.gov/pubmed/37507604 http://dx.doi.org/10.1007/s11274-023-03704-2 |
Sumario: | Tellurium is a super-trace metalloid on Earth. Owing to its excellent physical and chemical properties, it is used in industries such as metallurgy and manufacturing, particularly of semiconductors and – more recently – solar panels. As the global demand for tellurium rises, environmental issues surrounding tellurium have recently aroused concern due to its high toxicity. The amount of tellurium released to the environment is increasing, and microorganisms play an important role in the biogeochemical cycling of environmental tellurium. This review focuses on novel developments on tellurium transformations driven by microbes and includes the following sections: (1) history and applications of tellurium; (2) toxicity of tellurium; (3) microbial detoxification mechanisms against soluble tellurium anions including uptake, efflux and methods of reduction, and reduced ability to cope with oxidation stress or repair damaged DNA; and (4) the characteristics and applications of tellurium nanoparticles (TeNPs) produced by microbes. This review raises the awareness of microorganisms in tellurium biogeochemical cycling and the growing applications for microbial tellurium nanoparticles. |
---|