Cargando…
ipaPy2: Integrated Probabilistic Annotation (IPA) 2.0—an improved Bayesian-based method for the annotation of LC–MS/MS untargeted metabolomics data
SUMMARY: The Integrated Probabilistic Annotation (IPA) is an automated annotation method for LC–MS-based untargeted metabolomics experiments that provides statistically rigorous estimates of the probabilities associated with each annotation. Here, we introduce ipaPy2, a substantially improved and co...
Autores principales: | Del Carratore, Francesco, Eagles, William, Borka, Juraj, Breitling, Rainer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382385/ https://www.ncbi.nlm.nih.gov/pubmed/37490466 http://dx.doi.org/10.1093/bioinformatics/btad455 |
Ejemplares similares
-
ProbMetab: an R package for Bayesian probabilistic annotation of LC–MS-based metabolomics
por: Silva, Ricardo R., et al.
Publicado: (2014) -
MetAssign: probabilistic annotation of metabolites from LC–MS data using a Bayesian clustering approach
por: Daly, Rónán, et al.
Publicado: (2014) -
IPA 2009 International Meeting (IPA Rio)
Publicado: (2009) -
metID: an R package for automatable compound annotation for LC−MS-based data
por: Shen, Xiaotao, et al.
Publicado: (2021) -
Comparing Targeted vs. Untargeted MS(2) Data-Dependent Acquisition for Peak Annotation in LC–MS Metabolomics
por: Ten-Doménech, Isabel, et al.
Publicado: (2020)