Cargando…

Techniques to produce and evaluate realistic multivariate synthetic data

Data modeling requires a sufficient sample size for reproducibility. A small sample size can inhibit model evaluation. A synthetic data generation technique addressing this small sample size problem is evaluated: from the space of arbitrarily distributed samples, a subgroup (class) has a latent mult...

Descripción completa

Detalles Bibliográficos
Autores principales: Heine, John, Fowler, Erin E. E., Berglund, Anders, Schell, Michael J., Eschrich, Steven
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382509/
https://www.ncbi.nlm.nih.gov/pubmed/37507387
http://dx.doi.org/10.1038/s41598-023-38832-0
Descripción
Sumario:Data modeling requires a sufficient sample size for reproducibility. A small sample size can inhibit model evaluation. A synthetic data generation technique addressing this small sample size problem is evaluated: from the space of arbitrarily distributed samples, a subgroup (class) has a latent multivariate normal characteristic; synthetic data can be generated from this class with univariate kernel density estimation (KDE); and synthetic samples are statistically like their respective samples. Three samples (n = 667) were investigated with 10 input variables (X). KDE was used to augment the sample size in X. Maps produced univariate normal variables in Y. Principal component analysis in Y produced uncorrelated variables in T, where the probability density functions were approximated as normal and characterized; synthetic data was generated with normally distributed univariate random variables in T. Reversing each step produced synthetic data in Y and X. All samples were approximately multivariate normal in Y, permitting the generation of synthetic data. Probability density function and covariance comparisons showed similarity between samples and synthetic samples. A class of samples has a latent normal characteristic. For such samples, this approach offers a solution to the small sample size problem. Further studies are required to understand this latent class.