Cargando…

Simulation analysis of visual perception model based on pulse coupled neural network

Pulse-coupled neural networks perform well in many fields such as information retrieval, depth estimation and object detection. Based on pulse coupled neural network (PCNN) theory, this paper constructs a visual perception model framework and builds a real image reproduction platform. The model firs...

Descripción completa

Detalles Bibliográficos
Autor principal: Li, Mingdong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382568/
https://www.ncbi.nlm.nih.gov/pubmed/37507535
http://dx.doi.org/10.1038/s41598-023-39376-z
_version_ 1785080700494413824
author Li, Mingdong
author_facet Li, Mingdong
author_sort Li, Mingdong
collection PubMed
description Pulse-coupled neural networks perform well in many fields such as information retrieval, depth estimation and object detection. Based on pulse coupled neural network (PCNN) theory, this paper constructs a visual perception model framework and builds a real image reproduction platform. The model firstly analyzes the structure and generalization ability of neural network multi-class classifier, uses the minimax criterion of feature space as the splitting criterion of visual perception decision node, which solves the generalization problem of neural network learning algorithm. In the simulation process, the initial threshold is optimized by the two-dimensional maximum inter-class variance method, and in order to improve the real-time performance of the algorithm, the fast recurrence formula of neural network is derived and given. The PCNN image segmentation method based on genetic algorithm is analyzed. The genetic algorithm improves the loop termination condition and the adaptive setting of model parameters of PCNN image segmentation algorithm, but the PCNN image segmentation algorithm still has the problem of complexity. In order to solve this problem, this paper proposed an IGA-PCNN image segmentation method combining the improved algorithm and PCNN model. Firstly, it used the improved immune genetic algorithm to adaptively obtain the optimal threshold, and then replaced the dynamic threshold in PCNN model with the optimal threshold, and finally used the pulse coupling characteristics of PCNN model to complete the image segmentation. From the coupling characteristics of PCNN, junction close space of image and gray level characteristics, it determined the local gray mean square error of image connection strength coefficient. The feature extraction and object segmentation properties of PCNN come from the spike frequency of neurons, and the number of neurons in PCNN is equal to the number of pixels in the input image. In addition, the spatial and gray value differences of pixels should be considered comprehensively to determine their connection matrix. Digital experiments show that the multi-scale multi-task pulse coupled neural network model can shorten the total training time by 17 h, improve the comprehensive accuracy of the task test data set by 1.04%, and shorten the detection time of each image by 4.8 s compared with the series network model of multiple single tasks. Compared with the traditional PCNN algorithm, it has the advantages of fast visual perception and clear target contour segmentation, and effectively improves the anti-interference performance of the model.
format Online
Article
Text
id pubmed-10382568
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-103825682023-07-30 Simulation analysis of visual perception model based on pulse coupled neural network Li, Mingdong Sci Rep Article Pulse-coupled neural networks perform well in many fields such as information retrieval, depth estimation and object detection. Based on pulse coupled neural network (PCNN) theory, this paper constructs a visual perception model framework and builds a real image reproduction platform. The model firstly analyzes the structure and generalization ability of neural network multi-class classifier, uses the minimax criterion of feature space as the splitting criterion of visual perception decision node, which solves the generalization problem of neural network learning algorithm. In the simulation process, the initial threshold is optimized by the two-dimensional maximum inter-class variance method, and in order to improve the real-time performance of the algorithm, the fast recurrence formula of neural network is derived and given. The PCNN image segmentation method based on genetic algorithm is analyzed. The genetic algorithm improves the loop termination condition and the adaptive setting of model parameters of PCNN image segmentation algorithm, but the PCNN image segmentation algorithm still has the problem of complexity. In order to solve this problem, this paper proposed an IGA-PCNN image segmentation method combining the improved algorithm and PCNN model. Firstly, it used the improved immune genetic algorithm to adaptively obtain the optimal threshold, and then replaced the dynamic threshold in PCNN model with the optimal threshold, and finally used the pulse coupling characteristics of PCNN model to complete the image segmentation. From the coupling characteristics of PCNN, junction close space of image and gray level characteristics, it determined the local gray mean square error of image connection strength coefficient. The feature extraction and object segmentation properties of PCNN come from the spike frequency of neurons, and the number of neurons in PCNN is equal to the number of pixels in the input image. In addition, the spatial and gray value differences of pixels should be considered comprehensively to determine their connection matrix. Digital experiments show that the multi-scale multi-task pulse coupled neural network model can shorten the total training time by 17 h, improve the comprehensive accuracy of the task test data set by 1.04%, and shorten the detection time of each image by 4.8 s compared with the series network model of multiple single tasks. Compared with the traditional PCNN algorithm, it has the advantages of fast visual perception and clear target contour segmentation, and effectively improves the anti-interference performance of the model. Nature Publishing Group UK 2023-07-28 /pmc/articles/PMC10382568/ /pubmed/37507535 http://dx.doi.org/10.1038/s41598-023-39376-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Li, Mingdong
Simulation analysis of visual perception model based on pulse coupled neural network
title Simulation analysis of visual perception model based on pulse coupled neural network
title_full Simulation analysis of visual perception model based on pulse coupled neural network
title_fullStr Simulation analysis of visual perception model based on pulse coupled neural network
title_full_unstemmed Simulation analysis of visual perception model based on pulse coupled neural network
title_short Simulation analysis of visual perception model based on pulse coupled neural network
title_sort simulation analysis of visual perception model based on pulse coupled neural network
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382568/
https://www.ncbi.nlm.nih.gov/pubmed/37507535
http://dx.doi.org/10.1038/s41598-023-39376-z
work_keys_str_mv AT limingdong simulationanalysisofvisualperceptionmodelbasedonpulsecoupledneuralnetwork