Cargando…
Identification of biological components for sialolith formation organized in circular multi-layers
According to the previous studies of sialolithiasis reported so far, this study is aimed to identify the biological components of sialolith, which show different ultrastructures and chemical compositions from other stones, cholelith and urolith. Twenty-two specimens obtained from 20 patients were ex...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382579/ https://www.ncbi.nlm.nih.gov/pubmed/37507401 http://dx.doi.org/10.1038/s41598-023-37462-w |
_version_ | 1785080702855806976 |
---|---|
author | Sodnom-Ish, Buyanbileg Eo, Mi Young Cho, Yun Ju Seo, Mi Hyun Yang, Hyeong-Cheol Kim, Min-Keun Myoung, Hoon Lee, Suk Keun Kim, Soung Min |
author_facet | Sodnom-Ish, Buyanbileg Eo, Mi Young Cho, Yun Ju Seo, Mi Hyun Yang, Hyeong-Cheol Kim, Min-Keun Myoung, Hoon Lee, Suk Keun Kim, Soung Min |
author_sort | Sodnom-Ish, Buyanbileg |
collection | PubMed |
description | According to the previous studies of sialolithiasis reported so far, this study is aimed to identify the biological components of sialolith, which show different ultrastructures and chemical compositions from other stones, cholelith and urolith. Twenty-two specimens obtained from 20 patients were examined histologically, and analyzed with micro-CT, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). All sialoliths (n = 22) observed in this study showed a central nidus, which was filled with organoid matrix admixed with exosome vesicles, loose calcium apatite crystals, and many bacteria. The micro-CT and SEM observation clearly defined a single or multiple central nidus(es) encircled by highly calcified compact zone. The circular compact zone showed a band-like calcification, about 1–3 mm in thickness, and usually located between the central nidus and the peripheral multilayer zone. But some sialoliths (n = 5) showed severe erosion of compact zone by expanding multilayered zone depending on the level of calcification and inflammation in sialolith. By observing TEM images, many exosome vesicles and degraded cytoplasmic organelles were found in the central nidus, and some epithelial cells were also found in the calcified matrix of peripheral multilayer zone. Particularly, EDS analysis indicated the highest Ca/P ratio in the intermediate compact zone (1.77), and followed by the central nidus area (1.39) and the peripheral multilayer zone (0.87). Taken together, these data suggest that the central nidus containing many inflammatory exosomes and degraded cytoplasmic organelles has a potential to induce a band-like calcification of compact zone, and followed by the additional multilayer deposition of exfoliated salivary epithelial cells as well as salivary materials. Thereby, the calcium apatite-based sialolith is gradually growing in its volume size, and eventually obstructs the salivary flow and provides a site for the bacterial infection. |
format | Online Article Text |
id | pubmed-10382579 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-103825792023-07-30 Identification of biological components for sialolith formation organized in circular multi-layers Sodnom-Ish, Buyanbileg Eo, Mi Young Cho, Yun Ju Seo, Mi Hyun Yang, Hyeong-Cheol Kim, Min-Keun Myoung, Hoon Lee, Suk Keun Kim, Soung Min Sci Rep Article According to the previous studies of sialolithiasis reported so far, this study is aimed to identify the biological components of sialolith, which show different ultrastructures and chemical compositions from other stones, cholelith and urolith. Twenty-two specimens obtained from 20 patients were examined histologically, and analyzed with micro-CT, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). All sialoliths (n = 22) observed in this study showed a central nidus, which was filled with organoid matrix admixed with exosome vesicles, loose calcium apatite crystals, and many bacteria. The micro-CT and SEM observation clearly defined a single or multiple central nidus(es) encircled by highly calcified compact zone. The circular compact zone showed a band-like calcification, about 1–3 mm in thickness, and usually located between the central nidus and the peripheral multilayer zone. But some sialoliths (n = 5) showed severe erosion of compact zone by expanding multilayered zone depending on the level of calcification and inflammation in sialolith. By observing TEM images, many exosome vesicles and degraded cytoplasmic organelles were found in the central nidus, and some epithelial cells were also found in the calcified matrix of peripheral multilayer zone. Particularly, EDS analysis indicated the highest Ca/P ratio in the intermediate compact zone (1.77), and followed by the central nidus area (1.39) and the peripheral multilayer zone (0.87). Taken together, these data suggest that the central nidus containing many inflammatory exosomes and degraded cytoplasmic organelles has a potential to induce a band-like calcification of compact zone, and followed by the additional multilayer deposition of exfoliated salivary epithelial cells as well as salivary materials. Thereby, the calcium apatite-based sialolith is gradually growing in its volume size, and eventually obstructs the salivary flow and provides a site for the bacterial infection. Nature Publishing Group UK 2023-07-28 /pmc/articles/PMC10382579/ /pubmed/37507401 http://dx.doi.org/10.1038/s41598-023-37462-w Text en © The Author(s) 2023, corrected publication 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Sodnom-Ish, Buyanbileg Eo, Mi Young Cho, Yun Ju Seo, Mi Hyun Yang, Hyeong-Cheol Kim, Min-Keun Myoung, Hoon Lee, Suk Keun Kim, Soung Min Identification of biological components for sialolith formation organized in circular multi-layers |
title | Identification of biological components for sialolith formation organized in circular multi-layers |
title_full | Identification of biological components for sialolith formation organized in circular multi-layers |
title_fullStr | Identification of biological components for sialolith formation organized in circular multi-layers |
title_full_unstemmed | Identification of biological components for sialolith formation organized in circular multi-layers |
title_short | Identification of biological components for sialolith formation organized in circular multi-layers |
title_sort | identification of biological components for sialolith formation organized in circular multi-layers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382579/ https://www.ncbi.nlm.nih.gov/pubmed/37507401 http://dx.doi.org/10.1038/s41598-023-37462-w |
work_keys_str_mv | AT sodnomishbuyanbileg identificationofbiologicalcomponentsforsialolithformationorganizedincircularmultilayers AT eomiyoung identificationofbiologicalcomponentsforsialolithformationorganizedincircularmultilayers AT choyunju identificationofbiologicalcomponentsforsialolithformationorganizedincircularmultilayers AT seomihyun identificationofbiologicalcomponentsforsialolithformationorganizedincircularmultilayers AT yanghyeongcheol identificationofbiologicalcomponentsforsialolithformationorganizedincircularmultilayers AT kimminkeun identificationofbiologicalcomponentsforsialolithformationorganizedincircularmultilayers AT myounghoon identificationofbiologicalcomponentsforsialolithformationorganizedincircularmultilayers AT leesukkeun identificationofbiologicalcomponentsforsialolithformationorganizedincircularmultilayers AT kimsoungmin identificationofbiologicalcomponentsforsialolithformationorganizedincircularmultilayers |