Cargando…
Enhancing sugarcane disease classification with ensemble deep learning: A comparative study with transfer learning techniques
Deep learning practices in the agriculture sector can address many challenges faced by the farmers such as disease detection, yield estimation, soil profile estimation, etc. In this paper, disease classification for the sugarcane plant and the experimentation involved thereby is thoroughly discussed...
Autores principales: | Daphal, Swapnil Dadabhau, Koli, Sanjay M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382639/ https://www.ncbi.nlm.nih.gov/pubmed/37520940 http://dx.doi.org/10.1016/j.heliyon.2023.e18261 |
Ejemplares similares
-
EDLDR: An Ensemble Deep Learning Technique for Detection and Classification of Diabetic Retinopathy
por: Mondal, Sambit S., et al.
Publicado: (2022) -
Deep Ensemble Learning for Retinal Image Classification
por: Ho, Edward, et al.
Publicado: (2022) -
Ensembles of Deep Learning Models and Transfer Learning for Ear Recognition
por: Alshazly, Hammam, et al.
Publicado: (2019) -
Design ensemble deep learning model for pneumonia disease classification
por: El Asnaoui, Khalid
Publicado: (2021) -
Deep Transfer Learning Technique for Multimodal Disease Classification in Plant Images
por: Balaji, V., et al.
Publicado: (2023)