Cargando…
Feature selection translates drug response predictors from cell lines to patients
Targeted therapies and chemotherapies are prevalent in cancer treatment. Identification of predictive markers to stratify cancer patients who will respond to these therapies remains challenging because patient drug response data are limited. As large amounts of drug response data have been generated...
Autores principales: | Yuan, Shinsheng, Chen, Yen-Chou, Tsai, Chi-Hsuan, Chen, Huei-Wen, Shieh, Grace S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382684/ https://www.ncbi.nlm.nih.gov/pubmed/37519889 http://dx.doi.org/10.3389/fgene.2023.1217414 |
Ejemplares similares
-
Autoencoder Based Feature Selection Method for Classification of Anticancer Drug Response
por: Xu, Xiaolu, et al.
Publicado: (2019) -
PredMHC: An Effective Predictor of Major Histocompatibility Complex Using Mixed Features
por: Chen, Dong, et al.
Publicado: (2022) -
Computational Prediction of Drug Responses in Cancer Cell Lines From Cancer Omics and Detection of Drug Effectiveness Related Methylation Sites
por: Yuan, Rui, et al.
Publicado: (2020) -
Rare Compound Heterozygous Frameshift Mutations in ALMS1 Gene Identified Through Exome Sequencing in a Taiwanese Patient With Alström Syndrome
por: Tsai, Meng-Che, et al.
Publicado: (2018) -
Using Machine Learning Approaches to Predict Target Gene Expression in Rice T-DNA Insertional Mutants
por: Chien, Ching-Hsuan, et al.
Publicado: (2021)