Cargando…
Connectome-based machine learning models are vulnerable to subtle data manipulations
Neuroimaging-based predictive models continue to improve in performance, yet a widely overlooked aspect of these models is “trustworthiness,” or robustness to data manipulations. High trustworthiness is imperative for researchers to have confidence in their findings and interpretations. In this work...
Autores principales: | Rosenblatt, Matthew, Rodriguez, Raimundo X., Westwater, Margaret L., Dai, Wei, Horien, Corey, Greene, Abigail S., Constable, R. Todd, Noble, Stephanie, Scheinost, Dustin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10382940/ https://www.ncbi.nlm.nih.gov/pubmed/37521052 http://dx.doi.org/10.1016/j.patter.2023.100756 |
Ejemplares similares
-
Regions and Connections: Complementary Approaches to Characterize Brain Organization and Function
por: Horien, Corey, et al.
Publicado: (2019) -
A protocol for working with open-source neuroimaging datasets
por: Horien, Corey, et al.
Publicado: (2022) -
Behavioral and brain signatures of substance use vulnerability in childhood
por: Rapuano, Kristina M., et al.
Publicado: (2020) -
Task-induced brain state manipulation improves prediction of individual traits
por: Greene, Abigail S., et al.
Publicado: (2018) -
Corrigendum to “Behavioral and brain signatures of substance use vulnerability in childhood” [Developmental Cognitive Neuroscience 46 (December) (2020) 100878]
por: Rapuano, Kristina M., et al.
Publicado: (2020)