Cargando…

Non-Isothermal Crystallization Kinetics of Poly (ɛ-Caprolactone) (PCL) and MgO Incorporated PCL Nanofibers

The study delves into the kinetics of non-isothermal crystallization of Poly (ɛ-caprolactone) (PCL) and MgO-incorporated PCL nanofibers with varying cooling rates. Differential Scanning Calorimetry (DSC-3) was used to acquire crystallization information and investigate the kinetics behavior of the t...

Descripción completa

Detalles Bibliográficos
Autores principales: Gicheha, Daisaku, Cisse, Aicha Noura, Bhuiyan, Ariful, Shamim, Nabila
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383040/
https://www.ncbi.nlm.nih.gov/pubmed/37514403
http://dx.doi.org/10.3390/polym15143013
Descripción
Sumario:The study delves into the kinetics of non-isothermal crystallization of Poly (ɛ-caprolactone) (PCL) and MgO-incorporated PCL nanofibers with varying cooling rates. Differential Scanning Calorimetry (DSC-3) was used to acquire crystallization information and investigate the kinetics behavior of the two types of nanofibers under different cooling rates ranging from 0.5–5 K/min. The results show that the crystallization rate decreases at higher crystallization temperatures. Furthermore, the parameters of non-isothermal crystallization kinetics were investigated via several mathematical models, including Jeziorny and Mo’s models. Mo’s approach was suitable to describe the nanofibers’ overall non-isothermal crystallization process. In addition, the Kissinger and Friedman methods were used to calculate the activation energy of bulk-PCL, PCL, and MgO-PCL nanofibers. The result showed that the activation energy of bulk-PCL was comparatively lower than that of nanofibers. The investigation of the kinetics of crystallization plays a crucial role in optimizing manufacturing processes and enhancing the overall performance of nanofibers.