Cargando…

Structural and Optical Properties of NiO/ZnS Core–Shell Nanostructures for Efficient Quantum Dot Light-Emitting Diodes

Colloidal quantum dots (QDs) have emerged as promising candidates for optoelectronic devices. In particular, quantum dot light-emitting devices (QLEDs) utilizing QDs as the emission layer offer advantages in terms of simplified fabrication processes. However, the use of poly(3,4-ethylenedioxythiophe...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Jungho, Kim, Jiwan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383065/
https://www.ncbi.nlm.nih.gov/pubmed/37512380
http://dx.doi.org/10.3390/ma16145106
Descripción
Sumario:Colloidal quantum dots (QDs) have emerged as promising candidates for optoelectronic devices. In particular, quantum dot light-emitting devices (QLEDs) utilizing QDs as the emission layer offer advantages in terms of simplified fabrication processes. However, the use of poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) as a hole injection layer (HIL) in QLEDs presents limitations due to its acidic and hygroscopic nature. In this study, NiO/ZnS core–shell nanostructures as an alternative HIL were studied. The ZnS shell on NiO nanoparticles effectively suppresses the exciton quenching process and regulates charge transfer in QLEDs. The fabricated QLEDs with NiO/ZnS HIL demonstrate high luminance and current efficiency, highlighting the potential of NiO/ZnS as an inorganic material for highly stable all-inorganic QLEDs.