Cargando…
Exploring the Potential Performance of Fibroscan for Predicting and Evaluating Metabolic Syndrome using a Feature Selected Strategy of Machine Learning
Metabolic syndrome (MetS) includes several conditions that can increase an individual’s predisposition to high-risk cardiovascular events, morbidity, and mortality. Non-alcoholic fatty liver disease (NAFLD) is a predominant cause of cirrhosis, which is a global indicator of liver transplantation and...
Autores principales: | Chiu, Kuan-Lin, Chen, Yu-Da, Wang, Sen-Te, Chang, Tzu-Hao, Wu, Jenny L, Shih, Chun-Ming, Yu, Cheng-Sheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383149/ https://www.ncbi.nlm.nih.gov/pubmed/37512529 http://dx.doi.org/10.3390/metabo13070822 |
Ejemplares similares
-
Fibroscan® probe selection for lean adults
por: Stadlbauer, Vanessa, et al.
Publicado: (2021) -
Fibroscan for assessing liver fibrosis: An acceptable alternative for liver biopsy: Fibroscan: an acceptable alternative for liver biopsy
por: Malekzadeh, Reza, et al.
Publicado: (2011) -
Exploring Dielectric Constant and Dissipation Factor of LTCC Using Machine Learning
por: Liu, Yu-chen, et al.
Publicado: (2021) -
Applying machine learning technologies to explore students’ learning features and performance prediction
por: Su, Yu-Sheng, et al.
Publicado: (2022) -
Update of liver fibrosis and steatosis with transient elastography (Fibroscan)
por: Wong, Grace Lai-Hung
Publicado: (2013)