Cargando…
Predicting the Early-Age Time-Dependent Behaviors of a Prestressed Concrete Beam by Using Physics-Informed Neural Network
This paper proposes a physics-informed neural network (PINN) for predicting the early-age time-dependent behaviors of prestressed concrete beams. The PINN utilizes deep neural networks to learn the time-dependent coupling among the effective prestress force and the several factors that affect the ti...
Autores principales: | Park, Hyun-Woo, Hwang, Jin-Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383205/ https://www.ncbi.nlm.nih.gov/pubmed/37514943 http://dx.doi.org/10.3390/s23146649 |
Ejemplares similares
-
Pull-Out Strength and Bond Behavior of Prestressing Strands in Prestressed Self-Consolidating Concrete
por: Long, Wu-Jian, et al.
Publicado: (2014) -
Prestressed concrete
por: Rajagopalan, N.
Publicado: (2005) -
Numerical Analysis of Flexural Behavior of Prestressed Steel-Concrete Continuous Composite Beams Based on BP Neural Network
por: Du, Huanhuan, et al.
Publicado: (2022) -
Prestressed concrete structures /
por: Collins, Michael P., 1941-
Publicado: (1991) -
Prestressed concrete structures.
por: Komendant, August E.
Publicado: (1952)