Cargando…
MFF-YOLO: An Accurate Model for Detecting Tunnel Defects Based on Multi-Scale Feature Fusion
Tunnel linings require routine inspection as they have a big impact on a tunnel’s safety and longevity. In this study, the convolutional neural network was utilized to develop the MFF-YOLO model. To improve feature learning efficiency, a multi-scale feature fusion network was constructed within the...
Autores principales: | Zhu, Anfu, Wang, Bin, Xie, Jiaxiao, Ma, Congxiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383211/ https://www.ncbi.nlm.nih.gov/pubmed/37514784 http://dx.doi.org/10.3390/s23146490 |
Ejemplares similares
-
MFF-Net: Deepfake Detection Network Based on Multi-Feature Fusion
por: Zhao, Lei, et al.
Publicado: (2021) -
WD-YOLO: A More Accurate YOLO for Defect Detection in Weld X-ray Images
por: Pan, Kailai, et al.
Publicado: (2023) -
DB-YOLO: A Duplicate Bilateral YOLO Network for Multi-Scale Ship Detection in SAR Images
por: Zhu, Haozhen, et al.
Publicado: (2021) -
Titration of mitochondrial fusion rescues Mff-deficient cardiomyopathy
por: Chen, Hsiuchen, et al.
Publicado: (2015) -
Toward surface defect detection in electronics manufacturing by an accurate and lightweight YOLO-style object detector
por: Wang, Jyunrong, et al.
Publicado: (2023)