Cargando…
Preparation of Superhydrophilic/Underwater Superoleophobic and Superhydrophobic Stainless Steel Meshes Used for Oil/Water Separation
Robust membrane materials with high efficiency have attracted extensive attention in oil/water separation. In this work, carbon particles via candle combustion were firstly adsorbed on the surface of stainless steel meshes (SSMs), which formed a thin hydrophobic coating, and a rough structure was th...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383247/ https://www.ncbi.nlm.nih.gov/pubmed/37514432 http://dx.doi.org/10.3390/polym15143042 |
_version_ | 1785080861620699136 |
---|---|
author | Zhang, Yu-Ping Wang, Ya-Ning Du, Hong-Li Qv, Ling-Bo Chen, Jun |
author_facet | Zhang, Yu-Ping Wang, Ya-Ning Du, Hong-Li Qv, Ling-Bo Chen, Jun |
author_sort | Zhang, Yu-Ping |
collection | PubMed |
description | Robust membrane materials with high efficiency have attracted extensive attention in oil/water separation. In this work, carbon particles via candle combustion were firstly adsorbed on the surface of stainless steel meshes (SSMs), which formed a thin hydrophobic coating, and a rough structure was then constructed through chemical vapor deposition and high temperature calcination, with the resultant SSM surface wrapped with uniform silica coating possessing the characteristic of superoleophobicity underwater. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray powder diffraction (XRD) were used to characterize the modified SSMs. The prepared SSMs were superhydrophilic in air, and they had superoleophobicity underwater (157.4°). The separation efficiency of five oil/water mixtures was above 98.8%, and the separation flux was 46,300 L·m(−2)·h(−1). After it was immersed in 1 mol/L NaOH, 1 mol/L HCl and 3.5 wt% NaCl for 24 h, respectively, the efficiency was still above 97.3%. Further immersion in the solution of dopamine and octadecylamine resulted in the transformation of superhydrophililc/superoleophobicity-underwater SSMs to superhydrophobic SSMs, and the resultant SSMs with reverse surface wettability was also used for the oil/water separation with good separation efficiency and separation flux. |
format | Online Article Text |
id | pubmed-10383247 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103832472023-07-30 Preparation of Superhydrophilic/Underwater Superoleophobic and Superhydrophobic Stainless Steel Meshes Used for Oil/Water Separation Zhang, Yu-Ping Wang, Ya-Ning Du, Hong-Li Qv, Ling-Bo Chen, Jun Polymers (Basel) Article Robust membrane materials with high efficiency have attracted extensive attention in oil/water separation. In this work, carbon particles via candle combustion were firstly adsorbed on the surface of stainless steel meshes (SSMs), which formed a thin hydrophobic coating, and a rough structure was then constructed through chemical vapor deposition and high temperature calcination, with the resultant SSM surface wrapped with uniform silica coating possessing the characteristic of superoleophobicity underwater. Scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray powder diffraction (XRD) were used to characterize the modified SSMs. The prepared SSMs were superhydrophilic in air, and they had superoleophobicity underwater (157.4°). The separation efficiency of five oil/water mixtures was above 98.8%, and the separation flux was 46,300 L·m(−2)·h(−1). After it was immersed in 1 mol/L NaOH, 1 mol/L HCl and 3.5 wt% NaCl for 24 h, respectively, the efficiency was still above 97.3%. Further immersion in the solution of dopamine and octadecylamine resulted in the transformation of superhydrophililc/superoleophobicity-underwater SSMs to superhydrophobic SSMs, and the resultant SSMs with reverse surface wettability was also used for the oil/water separation with good separation efficiency and separation flux. MDPI 2023-07-14 /pmc/articles/PMC10383247/ /pubmed/37514432 http://dx.doi.org/10.3390/polym15143042 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Yu-Ping Wang, Ya-Ning Du, Hong-Li Qv, Ling-Bo Chen, Jun Preparation of Superhydrophilic/Underwater Superoleophobic and Superhydrophobic Stainless Steel Meshes Used for Oil/Water Separation |
title | Preparation of Superhydrophilic/Underwater Superoleophobic and Superhydrophobic Stainless Steel Meshes Used for Oil/Water Separation |
title_full | Preparation of Superhydrophilic/Underwater Superoleophobic and Superhydrophobic Stainless Steel Meshes Used for Oil/Water Separation |
title_fullStr | Preparation of Superhydrophilic/Underwater Superoleophobic and Superhydrophobic Stainless Steel Meshes Used for Oil/Water Separation |
title_full_unstemmed | Preparation of Superhydrophilic/Underwater Superoleophobic and Superhydrophobic Stainless Steel Meshes Used for Oil/Water Separation |
title_short | Preparation of Superhydrophilic/Underwater Superoleophobic and Superhydrophobic Stainless Steel Meshes Used for Oil/Water Separation |
title_sort | preparation of superhydrophilic/underwater superoleophobic and superhydrophobic stainless steel meshes used for oil/water separation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383247/ https://www.ncbi.nlm.nih.gov/pubmed/37514432 http://dx.doi.org/10.3390/polym15143042 |
work_keys_str_mv | AT zhangyuping preparationofsuperhydrophilicunderwatersuperoleophobicandsuperhydrophobicstainlesssteelmeshesusedforoilwaterseparation AT wangyaning preparationofsuperhydrophilicunderwatersuperoleophobicandsuperhydrophobicstainlesssteelmeshesusedforoilwaterseparation AT duhongli preparationofsuperhydrophilicunderwatersuperoleophobicandsuperhydrophobicstainlesssteelmeshesusedforoilwaterseparation AT qvlingbo preparationofsuperhydrophilicunderwatersuperoleophobicandsuperhydrophobicstainlesssteelmeshesusedforoilwaterseparation AT chenjun preparationofsuperhydrophilicunderwatersuperoleophobicandsuperhydrophobicstainlesssteelmeshesusedforoilwaterseparation |