Cargando…
Preparation and Characterization of Low CTE Poly(ethersulfone) Using Lignin Nano Composites as Flexible Substrates
Polyethersulfone (PES) has outstanding thermal and dimensional stability. It is considered an engineering thermoplastic. However, its high coefficient of thermal expansion (CTE) hinders its use in automobiles, microelectronics, and flexible display areas. To overcome its high coefficient of thermal...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383374/ https://www.ncbi.nlm.nih.gov/pubmed/37514501 http://dx.doi.org/10.3390/polym15143113 |
_version_ | 1785080894018551808 |
---|---|
author | Jeong, Jieun Kim, Soochan Yun, Sangsoo Yang, Xin Kim, Young Jun |
author_facet | Jeong, Jieun Kim, Soochan Yun, Sangsoo Yang, Xin Kim, Young Jun |
author_sort | Jeong, Jieun |
collection | PubMed |
description | Polyethersulfone (PES) has outstanding thermal and dimensional stability. It is considered an engineering thermoplastic. However, its high coefficient of thermal expansion (CTE) hinders its use in automobiles, microelectronics, and flexible display areas. To overcome its high coefficient of thermal expansion (CTE), recent studies have focused on reducing its high CTE and improving its mechanical properties by adding nano-sized fillers or materials. The addition of nanofiller or nanofibrils to the PES matrix often has a positive effect on its mechanical and thermal properties, making it a flexible display substrate. To obtain ideal flexible substrates, we prepared polyethersulfone with lignin nanocomposite films to reduce CTE and improve the mechanical and thermal properties of PES by varying the relative ratio of PES in the lignin nanocomposite. In this study, lignin as a biodegradable nanofiller was found to show high thermal, oxidative, and hydrolytic stability with favorable mechanical properties. PES/lignin nanocomposite films were prepared by solution casting according to the content of lignin (0 to 5 wt.%). PES/lignin composite films were subjected to mechanical, thermo-mechanical, optical, and surface analyses. The results showed enhanced thermomechanical and optical properties of PES, with the potential benefits of lignin filler materials realized for the development of thermoplastic polymer blends. |
format | Online Article Text |
id | pubmed-10383374 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-103833742023-07-30 Preparation and Characterization of Low CTE Poly(ethersulfone) Using Lignin Nano Composites as Flexible Substrates Jeong, Jieun Kim, Soochan Yun, Sangsoo Yang, Xin Kim, Young Jun Polymers (Basel) Article Polyethersulfone (PES) has outstanding thermal and dimensional stability. It is considered an engineering thermoplastic. However, its high coefficient of thermal expansion (CTE) hinders its use in automobiles, microelectronics, and flexible display areas. To overcome its high coefficient of thermal expansion (CTE), recent studies have focused on reducing its high CTE and improving its mechanical properties by adding nano-sized fillers or materials. The addition of nanofiller or nanofibrils to the PES matrix often has a positive effect on its mechanical and thermal properties, making it a flexible display substrate. To obtain ideal flexible substrates, we prepared polyethersulfone with lignin nanocomposite films to reduce CTE and improve the mechanical and thermal properties of PES by varying the relative ratio of PES in the lignin nanocomposite. In this study, lignin as a biodegradable nanofiller was found to show high thermal, oxidative, and hydrolytic stability with favorable mechanical properties. PES/lignin nanocomposite films were prepared by solution casting according to the content of lignin (0 to 5 wt.%). PES/lignin composite films were subjected to mechanical, thermo-mechanical, optical, and surface analyses. The results showed enhanced thermomechanical and optical properties of PES, with the potential benefits of lignin filler materials realized for the development of thermoplastic polymer blends. MDPI 2023-07-21 /pmc/articles/PMC10383374/ /pubmed/37514501 http://dx.doi.org/10.3390/polym15143113 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jeong, Jieun Kim, Soochan Yun, Sangsoo Yang, Xin Kim, Young Jun Preparation and Characterization of Low CTE Poly(ethersulfone) Using Lignin Nano Composites as Flexible Substrates |
title | Preparation and Characterization of Low CTE Poly(ethersulfone) Using Lignin Nano Composites as Flexible Substrates |
title_full | Preparation and Characterization of Low CTE Poly(ethersulfone) Using Lignin Nano Composites as Flexible Substrates |
title_fullStr | Preparation and Characterization of Low CTE Poly(ethersulfone) Using Lignin Nano Composites as Flexible Substrates |
title_full_unstemmed | Preparation and Characterization of Low CTE Poly(ethersulfone) Using Lignin Nano Composites as Flexible Substrates |
title_short | Preparation and Characterization of Low CTE Poly(ethersulfone) Using Lignin Nano Composites as Flexible Substrates |
title_sort | preparation and characterization of low cte poly(ethersulfone) using lignin nano composites as flexible substrates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383374/ https://www.ncbi.nlm.nih.gov/pubmed/37514501 http://dx.doi.org/10.3390/polym15143113 |
work_keys_str_mv | AT jeongjieun preparationandcharacterizationoflowctepolyethersulfoneusingligninnanocompositesasflexiblesubstrates AT kimsoochan preparationandcharacterizationoflowctepolyethersulfoneusingligninnanocompositesasflexiblesubstrates AT yunsangsoo preparationandcharacterizationoflowctepolyethersulfoneusingligninnanocompositesasflexiblesubstrates AT yangxin preparationandcharacterizationoflowctepolyethersulfoneusingligninnanocompositesasflexiblesubstrates AT kimyoungjun preparationandcharacterizationoflowctepolyethersulfoneusingligninnanocompositesasflexiblesubstrates |